oddadmix commited on
Commit
d5cca82
1 Parent(s): bef02ec

Upload PPO LunarLander-v2 trained agent 15000000 32 ENV

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -159.93 +/- 45.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 253.62 +/- 43.71
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f649f0bd9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f649f0bda60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f649f0bdaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f649f0bdb80>", "_build": "<function ActorCriticPolicy._build at 0x7f649f0bdc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f649f0bdca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f649f0bdd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f649f0bddc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f649f0bde50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f649f0bdee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f649f0bdf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f649f0c5040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f649f0c37c0>"}, "verbose": true, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704673865209088971, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNbszwche4+IlbMPkRMH74f6pK+3RuhPgAAAAAAAAAAxisKvhGEKj4XIJY+JoGCvZuIBL+jyGY+AAAAAAAAAAAmtIw92oKpP8SIuT6iA1K+mnwJveUIf7sAAAAAAAAAAO2nP76KfZc/Mg3yPuh/hr7945G9eObYPgAAAAAAAAAAJnCkPQJupT4yllQ+TJDSvdjoRr3ivlk+AAAAAAAAAADgzim+U0//Pt4vArwks0q+tz7hPVGtRL0AAAAAAAAAAE3A4T32yAk5pRKJO6omJblEidk77S0tuAAAAAAAAIA/84qGPQUvjj9uzNy9w152vc0VYb58PQm+AAAAAAAAAABNz04915NsuYX77Trzp1U1a64Huh6OCroAAIA/AACAP7Mm1j3hyJ26C7R2vBbIkTlTdoi72xF/ugAAgD8AAIA/ZjB7PBQgn7qIepm6VRpqvBPajjoCxU49AACAPwAAgD+a6yQ+sCyzP84b4T7ZbKK+3We4PrGmrj4AAAAAAAAAAPp1Ez7oT+s+7FwduFlpS77NYfG+1gstvgAAAAAAAAAAzfrXPKQqWbtFMis9QZQRPRHKbjxlwfO9AACAPwAAgD8AMJM8109Qu8JpRb2N2l+9Gs+IvCpYNL4AAIA/AACAPyZ+S74f1ay5G/Q0u27XhLn+qeU6UNVaOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCWbyc0+C9SMAWyUS3KMAXSUR0Ca1YYPGyX2dX2UKGgGR0BAegX2ugYhaAdN6ANoCEdAmtbtYwIt2HV9lChoBkdAUykT0xubZ2gHTegDaAhHQJrsHONYKY11fZQoaAZHQCmYfGMn7YVoB0vuaAhHQJr1Wq2jO9p1fZQoaAZHQETjnuiN83NoB03oA2gIR0Ca+h8zyjHodX2UKGgGR0BPNqC6H0sfaAdN6ANoCEdAmxA5QtSQ5nV9lChoBkdAJmS4FzMibGgHS8xoCEdAmx43DWK/EnV9lChoBkdASDr1qWTouGgHTegDaAhHQJsmKD9Oymh1fZQoaAZHQEKLvoePq9poB03oA2gIR0CbMoY4hllLdX2UKGgGR0BLLmgBcRlIaAdN6ANoCEdAm0Jcq4H5anV9lChoBkdAVeEzqKP4mGgHTegDaAhHQJtICqzZ6D51fZQoaAZHwCsRE8aGYa5oB0vraAhHQJtK/0ulGgB1fZQoaAZHQFQZMtbs4T9oB03oA2gIR0CbS+BAfMfSdX2UKGgGR0A9cPWQOnVHaAdN6ANoCEdAm1q42XLNfXV9lChoBkdAT6pCjUNKAmgHTegDaAhHQJtgBHXmNip1fZQoaAZHwDkeMBIWgvloB03oA2gIR0CbZwkv9LpSdX2UKGgGR0BbEDF+/gzhaAdN6ANoCEdAm2nUrK/203V9lChoBkfALlFByCFsYWgHTXMBaAhHQJtwjwF1SwZ1fZQoaAZHQDWKcf/3nIRoB03oA2gIR0CbdRUGmk30dX2UKGgGR0A8QKwpvxYraAdN6ANoCEdAm4KTfek563V9lChoBkdAU1M4iosI3WgHTegDaAhHQJuD9Ixxkup1fZQoaAZHwDsgPAfuCwtoB01FAWgIR0CbkLKYAsCldX2UKGgGR8BC3gJC0F8paAdL3GgIR0CbkcZQHiWFdX2UKGgGR0A+z4Bmwqy4aAdN6ANoCEdAm5fqK1og3nV9lChoBkdATVgXAM2FWWgHTegDaAhHQJugkiUxEfF1fZQoaAZHP/MKpDNQj2VoB00QAWgIR0CbqMW43FUAdX2UKGgGR8BvIEb3oLXuaAdNHgJoCEdAm6jp+YtxuXV9lChoBkfAYQx8k2P1c2gHTaIBaAhHQJupnQJHAh11fZQoaAZHQEocFoL5RCRoB03oA2gIR0CbtqCfHxSYdX2UKGgGR8BQ+vywwCbMaAdNQQFoCEdAm8AEliSaE3V9lChoBkdABcxmCiAUcmgHTQsBaAhHQJvR2dTYNAl1fZQoaAZHQFHzwiqyWzFoB03oA2gIR0Cb01n5SFXadX2UKGgGR0BFHj+BH09RaAdN6ANoCEdAm+HSCaqjrXV9lChoBkfAJxdJz1bqyGgHTegDaAhHQJvmgjyFwkx1fZQoaAZHQEwETJQtSQ5oB03oA2gIR0Cb6P3eenQ6dX2UKGgGR0A6Rci4axX5aAdN6ANoCEdAm+m0YsNDt3V9lChoBkfARRh+lTFVDWgHTegDaAhHQJvqh29tdiV1fZQoaAZHQFSiJul41P5oB03oA2gIR0CcBaR/EwWWdX2UKGgGR0BFs690zTF3aAdN6ANoCEdAnCVVCb+cY3V9lChoBkfAZtEFmFrVOWgHTVICaAhHQJwotPRArx11fZQoaAZHQFCknYg7o0RoB03oA2gIR0CcNh6F/QSjdX2UKGgGR8AYjJIUahpQaAdN6ANoCEdAnD5/qcEvCnV9lChoBkdAVSt2hZha1WgHTegDaAhHQJxIaCsfaHt1fZQoaAZHQCXWpEQXhwVoB03oA2gIR0CcUbwLVnVYdX2UKGgGR0BOjLpiZv1laAdN6ANoCEdAnFHfxx1gY3V9lChoBkdAWrwRe1KGtmgHTegDaAhHQJxhBr9ETg51fZQoaAZHwCkdS0jTrmhoB0vWaAhHQJxqE2AG0NV1fZQoaAZHQFMwH6uW8h9oB03oA2gIR0CcfpHuJDVpdX2UKGgGR8AxRD6FdszmaAdN6ANoCEdAnIAMjJMg2nV9lChoBkdARSG+IuXeFmgHTegDaAhHQJyOo4ku6Et1fZQoaAZHwGxxVjy4FzNoB00TAmgIR0CcjuyNGViXdX2UKGgGRz+ntnf2saKlaAdN6ANoCEdAnJNqNhmXgXV9lChoBkfAZ/bdZ7ojfWgHTdQDaAhHQJyUl3cHnlp1fZQoaAZHQDgfJA+pwS9oB03oA2gIR0CclcABT4tZdX2UKGgGR0BOkuuq3mV8aAdN6ANoCEdAnJZcQmNR33V9lChoBkfAbeo3zcynDWgHTWgCaAhHQJytb1kDp1R1fZQoaAZHQFRRtzCDVYpoB03oA2gIR0CcsRK3/givdX2UKGgGR8BvgdCb+cYqaAdN9AFoCEdAnLi+fh/AkHV9lChoBkfAM41cD8tPHmgHS9poCEdAnLwmWIGhVXV9lChoBkfAUNOesgdOqWgHS+VoCEdAnL4J1mrbQHV9lChoBkdAEJAMlTm4iGgHTTwBaAhHQJzGRSjxkNF1fZQoaAZHQE1lYkmhM8JoB03oA2gIR0Ccyf7xusLfdX2UKGgGR0BWFhUipvP1aAdN6ANoCEdAnMyPhAGB4HV9lChoBkfAcGC53Tuv2WgHTT8BaAhHQJzYHNMXaal1fZQoaAZHwFPn+N96TntoB0v2aAhHQJzdiF/QSjB1fZQoaAZHwDHd4QjD8+BoB0vJaAhHQJzgU2pAD7t1fZQoaAZHwDCbQpnYg7poB03oA2gIR0Cc7VQr+YMOdX2UKGgGR0BO70liSaE0aAdN6ANoCEdAnO1z+m3vyHV9lChoBkdAUWJhG6PKdWgHTegDaAhHQJ0D9qM3qA11fZQoaAZHwGTrfjbSJCVoB03AAmgIR0CdC2HsC1Z1dX2UKGgGR0BLVcB2fTTfaAdL7GgIR0CdEDNvwVj7dX2UKGgGR0A4lw6ySmqHaAdN6ANoCEdAnRYsRpUPx3V9lChoBkfAFF0UGmk30mgHTegDaAhHQJ0XcQOFxn51fZQoaAZHwCRq4lQdjoZoB02gAWgIR0CdHl5y2hIwdX2UKGgGR8A//nZ00WM1aAdLzmgIR0CdI7w6ySmqdX2UKGgGR0BINdZRsMy8aAdN6ANoCEdAnSPz5O8CgnV9lChoBkfAMHrwrlNlAmgHTegDaAhHQJ0kL4k/r0J1fZQoaAZHQCxHgtOEdvNoB03oA2gIR0CdKJ/wRXfZdX2UKGgGR0BFbjSgGr0baAdLxmgIR0CdKKVrylN2dX2UKGgGR8AjLGKAJ9iMaAdLymgIR0CdMj2cawUydX2UKGgGR8AzNZof0VafaAdL2mgIR0CdThuQIUrTdX2UKGgGR0BVXy5mRNh3aAdN6ANoCEdAnVDmhdt2tHV9lChoBkdAWFv8Muvll2gHTegDaAhHQJ1VMy0rsjV1fZQoaAZHQEMydqcmShdoB03oA2gIR0CdZSrGza9LdX2UKGgGR0BZs0nkT6BRaAdN6ANoCEdAnWgQFs54nnV9lChoBkdASRJmqYJE6WgHTegDaAhHQJ11kdq+Jxh1fZQoaAZHQFQkg5zYEntoB03oA2gIR0Cde3Gff4yodX2UKGgGR8BFBjjR2KVIaAdNQgFoCEdAnYP4SpR4yHV9lChoBkfAQRmS+xnnMmgHTegDaAhHQJ2Lav/zasZ1fZQoaAZHQDQH5mAbyYpoB00KAWgIR0CdjvGT9sJqdX2UKGgGR0BT83os7MgVaAdN6ANoCEdAnbJ5F1B+nnV9lChoBkdANeVmSQo1DWgHTegDaAhHQJ25XYraufV1fZQoaAZHQEtGSFoL5RFoB03oA2gIR0Cdw3KNyYG/dX2UKGgGR8Ad5MFlkH2RaAdNSQFoCEdAncPMD8tPHnV9lChoBkdANAX/5tWMj2gHTegDaAhHQJ3J7d0q6OJ1fZQoaAZHwBSppFkQPI5oB03oA2gIR0Cdyi0EHMUzdX2UKGgGR8BTKzasZHd5aAdN6ANoCEdAnc9y9h7VrnV9lChoBkdAVYaLdepn6GgHTegDaAhHQJ3PfOu7pV11fZQoaAZHQDck+u/1xsFoB03oA2gIR0Cd2fam4y44dX2UKGgGR8BD4+z2OAAiaAdLgGgIR0Cd226jnFHbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.999, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Cloudpickle": "2.2.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e3e7b99d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e3e7b9a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e3e7b9af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e3e7b9b80>", "_build": "<function ActorCriticPolicy._build at 0x7f8e3e7b9c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f8e3e7b9ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e3e7b9d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e3e7b9dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8e3e7b9e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e3e7b9ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e3e7b9f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e3e7c0040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8e3eb985c0>"}, "verbose": true, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704682944641169731, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOSPr7NjaA//FXDvl7K3L5e7pm+6plFvgAAAAAAAAAAmkLePCss9T2peAm+RfoAviAnSb2ZLIS8AAAAAAAAAABz0aQ9jxojui5wkDkipL6y+RfAuzUmqbgAAIA/AACAPzPX7bugobg/Zq47vq7Nnj5+o0E8lstdPQAAAAAAAAAAEzAkvljFnz9idhC/Ak3pvvsYgb64k4m+AAAAAAAAAADz9aI918MJuWZvgblvewI0A9nDu7WxmjgAAIA/AAAAAMDSL75drEo+gzLNPq4hrr70Bgg+wCN+PQAAAAAAAAAAzTaAPIXDyblWhj20WvUlL66CoLlnJqMzAACAPwAAgD/N0Zo8l/8lP14pED52ALq+mLzmPRjr2jwAAAAAAAAAAGZ/uj27p1g/hQ4pPq26zb4Ro/M8EYaUvAAAAAAAAAAAA8GnPnXnED+0wzy+ZJRtvoTpOj0sXTC9AAAAAAAAAABmHq87NgEgvIVd8r2mbVe+cSqEvPvlez4AAIA/AACAP0AU6j0iGHw+39GCvg3Rjr46C5S8MLIKvQAAAAAAAAAAzYpIvHsombreipO8L/2GPHzuhLvIEWs9AACAPwAAgD+a1qY823KzP24O/j4wsQ6+Mfs4vNZi9TsAAAAAAAAAAGbxPr46OYw/Ar9jvds0077YsIK+wrDRPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGTUwnH/96MAWyUTWkBjAF0lEdAnWH8w5/9YXV9lChoBkdAbTuRcu8K5WgHTQoBaAhHQJ1jf6+FlCl1fZQoaAZHQHKdUqhDgIhoB01qAWgIR0CdZU9OARTTdX2UKGgGR0BtgInfEXLvaAdNIQFoCEdAnWgslHBk7XV9lChoBkdAcVb5MURFqmgHTQUBaAhHQJ1oUYyfthN1fZQoaAZHQHNFzT4L1EpoB01IAWgIR0CdathRZU1idX2UKGgGR0BkeZXyRSxaaAdN6ANoCEdAnWxFFMIu5HV9lChoBkdAcJwgOz6acGgHS/poCEdAnWxZU96kZnV9lChoBkdAcofxSpBHC2gHTUsBaAhHQJ1s27btZ3d1fZQoaAZHQG2Qdw3o9s9oB01fAWgIR0CdbYxtYSxrdX2UKGgGR0BypHu8brC4aAdNIQFoCEdAnW3EGZ/kNnV9lChoBkdAcM3DvmYBvWgHS+VoCEdAnW42etjkMnV9lChoBkdAcKjwNLDhtWgHTSUBaAhHQJ1vFXMhX8x1fZQoaAZHQHEnp/b0voNoB01iAWgIR0CdbyFaSs8xdX2UKGgGR0Bt22NYKYzBaAdNdgFoCEdAnXLh6v7m+3V9lChoBkdAcFX8R+SbIGgHTTUBaAhHQJ1zNYcNpdt1fZQoaAZHQHC0OVPepGZoB00eAWgIR0Cdc1pDNQj2dX2UKGgGR0BwP4YLsruqaAdNEQFoCEdAnXQ0DdP+GXV9lChoBkdARrn0se4kNWgHS9JoCEdAnXoFjRUm2XV9lChoBkdAc7sYmb9ZR2gHTVIBaAhHQJ16fgccU/R1fZQoaAZHQHGDbZrYXftoB00sAWgIR0CdesHWjGkvdX2UKGgGR0Bw1MRf4REnaAdNHAFoCEdAnXyhF/hESnV9lChoBkdAcGfkz41xbWgHTRcBaAhHQJ19Ml1KXfJ1fZQoaAZHQG+/bT+ee4FoB01KAWgIR0CdfhxDLKV6dX2UKGgGR0ByX8vDgqEwaAdNjwFoCEdAnX57tiQT23V9lChoBkdAbbTsWO6un2gHTVIBaAhHQJ1+iO0b9611fZQoaAZHQHKa9ELH+61oB00tAWgIR0Cdf6ctoSL7dX2UKGgGR0BwqlBVuJk5aAdNhwFoCEdAnYILKV6eG3V9lChoBkdAa//oRIz3y2gHTQMBaAhHQJ2CK87IT5B1fZQoaAZHQHIrx55Z8rtoB00LAWgIR0CdgsraufVadX2UKGgGR0BhaArUb1h9aAdN6ANoCEdAnYN5wGW2PXV9lChoBkdAcFiyoXKr72gHTSUBaAhHQJ2DpCngpBp1fZQoaAZHQG+O4TK1XvJoB02lAWgIR0CdhF/XoTwldX2UKGgGR0ByA8F/x2B8aAdNJQFoCEdAnYTA5imVJXV9lChoBkdAbtKn1nM+vGgHS/loCEdAnYe2p++dsnV9lChoBkdARyf+OwPiDWgHS6hoCEdAnYpzd56dD3V9lChoBkdAcuGZjQRf4WgHS/toCEdAnYsXlOoHcHV9lChoBkdAcBmEfkmx+2gHTRYBaAhHQJ2NG8dxQzl1fZQoaAZHQHCmgOjIq9ZoB01jAWgIR0CdjY51Ng0CdX2UKGgGR0ByQtbfP5YYaAdNTAFoCEdAnY6JSBK+SXV9lChoBkdAcXwKpkwvg2gHTTEBaAhHQJ2QAAFPi1l1fZQoaAZHQHAj4ikfs/poB01uAWgIR0CdkQR3NcGDdX2UKGgGR0ByD9d/rjYJaAdNWgFoCEdAnZEdQ9A5aXV9lChoBkdAcPggWac7Q2gHTQMBaAhHQJ2RczLwF1V1fZQoaAZHQG6bLAYYR/VoB00hAWgIR0CdkhLsKLKndX2UKGgGR0BwxfrOZ9eAaAdNGAFoCEdAnZJMry1/lXV9lChoBkdAczI9PUKArmgHTTcBaAhHQJ2tIkona391fZQoaAZHQHAx3aJyhi9oB00/AWgIR0Cdr5brTpgUdX2UKGgGR0BuI38ZUDMeaAdL92gIR0Cdr7gnc+JQdX2UKGgGR0BxymRISUTtaAdN7QFoCEdAna/E/0NBnnV9lChoBkdAcjYvZh8YymgHTU0BaAhHQJ2wkfms/6h1fZQoaAZHQHB3luejEehoB00TAWgIR0Cds5dPci4bdX2UKGgGR0BwiRcPe54GaAdNAwFoCEdAnbSKDK5kLHV9lChoBkdAcJuk0Jng52gHS/toCEdAnbViD28IzHV9lChoBkdAcQ05TIeYD2gHTRMBaAhHQJ21wnG82751fZQoaAZHQGzHce0Xxe9oB01NAWgIR0CdthqesgdPdX2UKGgGR0BtSzzI3irDaAdNBwFoCEdAnbc0hRqGlHV9lChoBkdAbTTqv/zasmgHTRYBaAhHQJ244nx8UmF1fZQoaAZHQHHkPhIe5nVoB00hAWgIR0CduYawD/2kdX2UKGgGR0Bwi/4dp7C0aAdNPAFoCEdAnbtBV2iconV9lChoBkdAcJvUPQOWjWgHTTEBaAhHQJ27lsCT2WZ1fZQoaAZHQHCbv4IrvstoB005AWgIR0Cdu8MLF4s3dX2UKGgGR0BuCq5wwTM8aAdNTAFoCEdAnbz9SQ5my3V9lChoBkdAcW5gFotcwGgHTRIBaAhHQJ29CeK8+Rp1fZQoaAZHQHEhFANXo1VoB00cAWgIR0CdvWYR/ViGdX2UKGgGR0BwFBkd3jdYaAdNNwFoCEdAnb5n/5tWMnV9lChoBkdAbf6QqZtvXWgHTUABaAhHQJ2/0kpqh111fZQoaAZHQEUybiIcinpoB0vTaAhHQJ3BG4Vh1DB1fZQoaAZHQG/uojW07bNoB00tAWgIR0Cdwh5UtI07dX2UKGgGR0BwFIVdonKGaAdNSQFoCEdAncSUkGA09HV9lChoBkdAcbSAZsKsuGgHTTkBaAhHQJ3Elx//ech1fZQoaAZHQHEn9lum78NoB01BAWgIR0CdxWN7BwdbdX2UKGgGR0ByheQgcLjQaAdNEgFoCEdAncY5cs189nV9lChoBkdAcJ2Cpm29c2gHTWEBaAhHQJ3HcQiA2AJ1fZQoaAZHQHGCUhePaL5oB0v7aAhHQJ3HymfoRqZ1fZQoaAZHQHBSOd9Ujs5oB002AWgIR0Cdyyw0fozOdX2UKGgGR0ByeGBH09QoaAdNRAFoCEdAnctv+CK77XV9lChoBkdAczqIz3yqdmgHTXABaAhHQJ3MEOe8PFx1fZQoaAZHQHCppdWyTpxoB00uAWgIR0CdzGBz3h4udX2UKGgGR0Bvarw8W9DhaAdNRQFoCEdAnc2UcsDnvHV9lChoBkdAcF+hXbM5fmgHTScBaAhHQJ3NvmT1TR91fZQoaAZHQHIoDXarWAhoB0vkaAhHQJ3OVXlr/Kh1fZQoaAZHQHAksw1zhgpoB01jAWgIR0Cdz2cHnlnzdX2UKGgGR0Bx3Ux9G7SRaAdNOgFoCEdAndApcophF3V9lChoBkdAbaXWSU1Q7GgHTV4BaAhHQJ3Tm+TNdJJ1fZQoaAZHQHCV8cENe+poB00TAWgIR0Cd0+WMju8cdX2UKGgGR0BugcunMt9QaAdNIwFoCEdAndPviLl3hXV9lChoBkdAcLGuxKQJX2gHTTIBaAhHQJ3UqXXyy2R1fZQoaAZHQG9U5kCmuT1oB00iAWgIR0Cd1V1ivxH5dX2UKGgGR0BxCPe7+T/yaAdNHgFoCEdAndZJJf6XSnV9lChoBkdAcpKdUbT+emgHTSkBaAhHQJ3XMKlYU351fZQoaAZHQEMk4gieNDNoB0vOaAhHQJ3YuV9nbqR1fZQoaAZHQHEwUgfU4JhoB00aAWgIR0Cd2cMbFS88dX2UKGgGR0By/nZcs189aAdNHgFoCEdAndrQXuVopXV9lChoBkdAcL5zC1qnFmgHTTYBaAhHQJ3bA9ic5Kh1fZQoaAZHQG/mY+KTB69oB00zAWgIR0Cd3VXY150KdX2UKGgGR0BwnC8h9srNaAdNZQFoCEdAnd5IFRpDeHV9lChoBkdAb0uQlruYyGgHTR4BaAhHQJ3e7uZ1FH91fZQoaAZHQHEj8DW9US9oB01DAWgIR0Cd3/nM+u/2dX2UKGgGR0BzE7sHB1s+aAdL9GgIR0Cd3/8JUo8ZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Cloudpickle": "2.2.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a2730d596c66db22b0f789baa91b261906e8bbbf4582402a5ea9de10083ffdd
3
- size 146881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174e66e13ca40b5a7fb197f0ab4d87fad69cd44584715049bb216c9d901ec74e
3
+ size 146882
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f649f0bd9d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f649f0bda60>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f649f0bdaf0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f649f0bdb80>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f649f0bdc10>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f649f0bdca0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f649f0bdd30>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f649f0bddc0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f649f0bde50>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f649f0bdee0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f649f0bdf70>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f649f0c5040>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f649f0c37c0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1704673865209088971,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNbszwche4+IlbMPkRMH74f6pK+3RuhPgAAAAAAAAAAxisKvhGEKj4XIJY+JoGCvZuIBL+jyGY+AAAAAAAAAAAmtIw92oKpP8SIuT6iA1K+mnwJveUIf7sAAAAAAAAAAO2nP76KfZc/Mg3yPuh/hr7945G9eObYPgAAAAAAAAAAJnCkPQJupT4yllQ+TJDSvdjoRr3ivlk+AAAAAAAAAADgzim+U0//Pt4vArwks0q+tz7hPVGtRL0AAAAAAAAAAE3A4T32yAk5pRKJO6omJblEidk77S0tuAAAAAAAAIA/84qGPQUvjj9uzNy9w152vc0VYb58PQm+AAAAAAAAAABNz04915NsuYX77Trzp1U1a64Huh6OCroAAIA/AACAP7Mm1j3hyJ26C7R2vBbIkTlTdoi72xF/ugAAgD8AAIA/ZjB7PBQgn7qIepm6VRpqvBPajjoCxU49AACAPwAAgD+a6yQ+sCyzP84b4T7ZbKK+3We4PrGmrj4AAAAAAAAAAPp1Ez7oT+s+7FwduFlpS77NYfG+1gstvgAAAAAAAAAAzfrXPKQqWbtFMis9QZQRPRHKbjxlwfO9AACAPwAAgD8AMJM8109Qu8JpRb2N2l+9Gs+IvCpYNL4AAIA/AACAPyZ+S74f1ay5G/Q0u27XhLn+qeU6UNVaOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCWbyc0+C9SMAWyUS3KMAXSUR0Ca1YYPGyX2dX2UKGgGR0BAegX2ugYhaAdN6ANoCEdAmtbtYwIt2HV9lChoBkdAUykT0xubZ2gHTegDaAhHQJrsHONYKY11fZQoaAZHQCmYfGMn7YVoB0vuaAhHQJr1Wq2jO9p1fZQoaAZHQETjnuiN83NoB03oA2gIR0Ca+h8zyjHodX2UKGgGR0BPNqC6H0sfaAdN6ANoCEdAmxA5QtSQ5nV9lChoBkdAJmS4FzMibGgHS8xoCEdAmx43DWK/EnV9lChoBkdASDr1qWTouGgHTegDaAhHQJsmKD9Oymh1fZQoaAZHQEKLvoePq9poB03oA2gIR0CbMoY4hllLdX2UKGgGR0BLLmgBcRlIaAdN6ANoCEdAm0Jcq4H5anV9lChoBkdAVeEzqKP4mGgHTegDaAhHQJtICqzZ6D51fZQoaAZHwCsRE8aGYa5oB0vraAhHQJtK/0ulGgB1fZQoaAZHQFQZMtbs4T9oB03oA2gIR0CbS+BAfMfSdX2UKGgGR0A9cPWQOnVHaAdN6ANoCEdAm1q42XLNfXV9lChoBkdAT6pCjUNKAmgHTegDaAhHQJtgBHXmNip1fZQoaAZHwDkeMBIWgvloB03oA2gIR0CbZwkv9LpSdX2UKGgGR0BbEDF+/gzhaAdN6ANoCEdAm2nUrK/203V9lChoBkfALlFByCFsYWgHTXMBaAhHQJtwjwF1SwZ1fZQoaAZHQDWKcf/3nIRoB03oA2gIR0CbdRUGmk30dX2UKGgGR0A8QKwpvxYraAdN6ANoCEdAm4KTfek563V9lChoBkdAU1M4iosI3WgHTegDaAhHQJuD9Ixxkup1fZQoaAZHwDsgPAfuCwtoB01FAWgIR0CbkLKYAsCldX2UKGgGR8BC3gJC0F8paAdL3GgIR0CbkcZQHiWFdX2UKGgGR0A+z4Bmwqy4aAdN6ANoCEdAm5fqK1og3nV9lChoBkdATVgXAM2FWWgHTegDaAhHQJugkiUxEfF1fZQoaAZHP/MKpDNQj2VoB00QAWgIR0CbqMW43FUAdX2UKGgGR8BvIEb3oLXuaAdNHgJoCEdAm6jp+YtxuXV9lChoBkfAYQx8k2P1c2gHTaIBaAhHQJupnQJHAh11fZQoaAZHQEocFoL5RCRoB03oA2gIR0CbtqCfHxSYdX2UKGgGR8BQ+vywwCbMaAdNQQFoCEdAm8AEliSaE3V9lChoBkdABcxmCiAUcmgHTQsBaAhHQJvR2dTYNAl1fZQoaAZHQFHzwiqyWzFoB03oA2gIR0Cb01n5SFXadX2UKGgGR0BFHj+BH09RaAdN6ANoCEdAm+HSCaqjrXV9lChoBkfAJxdJz1bqyGgHTegDaAhHQJvmgjyFwkx1fZQoaAZHQEwETJQtSQ5oB03oA2gIR0Cb6P3eenQ6dX2UKGgGR0A6Rci4axX5aAdN6ANoCEdAm+m0YsNDt3V9lChoBkfARRh+lTFVDWgHTegDaAhHQJvqh29tdiV1fZQoaAZHQFSiJul41P5oB03oA2gIR0CcBaR/EwWWdX2UKGgGR0BFs690zTF3aAdN6ANoCEdAnCVVCb+cY3V9lChoBkfAZtEFmFrVOWgHTVICaAhHQJwotPRArx11fZQoaAZHQFCknYg7o0RoB03oA2gIR0CcNh6F/QSjdX2UKGgGR8AYjJIUahpQaAdN6ANoCEdAnD5/qcEvCnV9lChoBkdAVSt2hZha1WgHTegDaAhHQJxIaCsfaHt1fZQoaAZHQCXWpEQXhwVoB03oA2gIR0CcUbwLVnVYdX2UKGgGR0BOjLpiZv1laAdN6ANoCEdAnFHfxx1gY3V9lChoBkdAWrwRe1KGtmgHTegDaAhHQJxhBr9ETg51fZQoaAZHwCkdS0jTrmhoB0vWaAhHQJxqE2AG0NV1fZQoaAZHQFMwH6uW8h9oB03oA2gIR0CcfpHuJDVpdX2UKGgGR8AxRD6FdszmaAdN6ANoCEdAnIAMjJMg2nV9lChoBkdARSG+IuXeFmgHTegDaAhHQJyOo4ku6Et1fZQoaAZHwGxxVjy4FzNoB00TAmgIR0CcjuyNGViXdX2UKGgGRz+ntnf2saKlaAdN6ANoCEdAnJNqNhmXgXV9lChoBkfAZ/bdZ7ojfWgHTdQDaAhHQJyUl3cHnlp1fZQoaAZHQDgfJA+pwS9oB03oA2gIR0CclcABT4tZdX2UKGgGR0BOkuuq3mV8aAdN6ANoCEdAnJZcQmNR33V9lChoBkfAbeo3zcynDWgHTWgCaAhHQJytb1kDp1R1fZQoaAZHQFRRtzCDVYpoB03oA2gIR0CcsRK3/givdX2UKGgGR8BvgdCb+cYqaAdN9AFoCEdAnLi+fh/AkHV9lChoBkfAM41cD8tPHmgHS9poCEdAnLwmWIGhVXV9lChoBkfAUNOesgdOqWgHS+VoCEdAnL4J1mrbQHV9lChoBkdAEJAMlTm4iGgHTTwBaAhHQJzGRSjxkNF1fZQoaAZHQE1lYkmhM8JoB03oA2gIR0Ccyf7xusLfdX2UKGgGR0BWFhUipvP1aAdN6ANoCEdAnMyPhAGB4HV9lChoBkfAcGC53Tuv2WgHTT8BaAhHQJzYHNMXaal1fZQoaAZHwFPn+N96TntoB0v2aAhHQJzdiF/QSjB1fZQoaAZHwDHd4QjD8+BoB0vJaAhHQJzgU2pAD7t1fZQoaAZHwDCbQpnYg7poB03oA2gIR0Cc7VQr+YMOdX2UKGgGR0BO70liSaE0aAdN6ANoCEdAnO1z+m3vyHV9lChoBkdAUWJhG6PKdWgHTegDaAhHQJ0D9qM3qA11fZQoaAZHwGTrfjbSJCVoB03AAmgIR0CdC2HsC1Z1dX2UKGgGR0BLVcB2fTTfaAdL7GgIR0CdEDNvwVj7dX2UKGgGR0A4lw6ySmqHaAdN6ANoCEdAnRYsRpUPx3V9lChoBkfAFF0UGmk30mgHTegDaAhHQJ0XcQOFxn51fZQoaAZHwCRq4lQdjoZoB02gAWgIR0CdHl5y2hIwdX2UKGgGR8A//nZ00WM1aAdLzmgIR0CdI7w6ySmqdX2UKGgGR0BINdZRsMy8aAdN6ANoCEdAnSPz5O8CgnV9lChoBkfAMHrwrlNlAmgHTegDaAhHQJ0kL4k/r0J1fZQoaAZHQCxHgtOEdvNoB03oA2gIR0CdKJ/wRXfZdX2UKGgGR0BFbjSgGr0baAdLxmgIR0CdKKVrylN2dX2UKGgGR8AjLGKAJ9iMaAdLymgIR0CdMj2cawUydX2UKGgGR8AzNZof0VafaAdL2mgIR0CdThuQIUrTdX2UKGgGR0BVXy5mRNh3aAdN6ANoCEdAnVDmhdt2tHV9lChoBkdAWFv8Muvll2gHTegDaAhHQJ1VMy0rsjV1fZQoaAZHQEMydqcmShdoB03oA2gIR0CdZSrGza9LdX2UKGgGR0BZs0nkT6BRaAdN6ANoCEdAnWgQFs54nnV9lChoBkdASRJmqYJE6WgHTegDaAhHQJ11kdq+Jxh1fZQoaAZHQFQkg5zYEntoB03oA2gIR0Cde3Gff4yodX2UKGgGR8BFBjjR2KVIaAdNQgFoCEdAnYP4SpR4yHV9lChoBkfAQRmS+xnnMmgHTegDaAhHQJ2Lav/zasZ1fZQoaAZHQDQH5mAbyYpoB00KAWgIR0CdjvGT9sJqdX2UKGgGR0BT83os7MgVaAdN6ANoCEdAnbJ5F1B+nnV9lChoBkdANeVmSQo1DWgHTegDaAhHQJ25XYraufV1fZQoaAZHQEtGSFoL5RFoB03oA2gIR0Cdw3KNyYG/dX2UKGgGR8Ad5MFlkH2RaAdNSQFoCEdAncPMD8tPHnV9lChoBkdANAX/5tWMj2gHTegDaAhHQJ3J7d0q6OJ1fZQoaAZHwBSppFkQPI5oB03oA2gIR0Cdyi0EHMUzdX2UKGgGR8BTKzasZHd5aAdN6ANoCEdAnc9y9h7VrnV9lChoBkdAVYaLdepn6GgHTegDaAhHQJ3PfOu7pV11fZQoaAZHQDck+u/1xsFoB03oA2gIR0Cd2fam4y44dX2UKGgGR8BD4+z2OAAiaAdLgGgIR0Cd226jnFHbdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -53,12 +53,12 @@
53
  },
54
  "_n_updates": 248,
55
  "n_steps": 1024,
56
- "gamma": 0.99999,
57
- "gae_lambda": 0.999,
58
  "ent_coef": 0.01,
59
  "vf_coef": 0.5,
60
  "max_grad_norm": 0.5,
61
- "batch_size": 64,
62
  "n_epochs": 4,
63
  "clip_range": {
64
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8e3e7b99d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8e3e7b9a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8e3e7b9af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8e3e7b9b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8e3e7b9c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8e3e7b9ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8e3e7b9d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8e3e7b9dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8e3e7b9e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8e3e7b9ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8e3e7b9f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8e3e7c0040>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8e3eb985c0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1704682944641169731,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOSPr7NjaA//FXDvl7K3L5e7pm+6plFvgAAAAAAAAAAmkLePCss9T2peAm+RfoAviAnSb2ZLIS8AAAAAAAAAABz0aQ9jxojui5wkDkipL6y+RfAuzUmqbgAAIA/AACAPzPX7bugobg/Zq47vq7Nnj5+o0E8lstdPQAAAAAAAAAAEzAkvljFnz9idhC/Ak3pvvsYgb64k4m+AAAAAAAAAADz9aI918MJuWZvgblvewI0A9nDu7WxmjgAAIA/AAAAAMDSL75drEo+gzLNPq4hrr70Bgg+wCN+PQAAAAAAAAAAzTaAPIXDyblWhj20WvUlL66CoLlnJqMzAACAPwAAgD/N0Zo8l/8lP14pED52ALq+mLzmPRjr2jwAAAAAAAAAAGZ/uj27p1g/hQ4pPq26zb4Ro/M8EYaUvAAAAAAAAAAAA8GnPnXnED+0wzy+ZJRtvoTpOj0sXTC9AAAAAAAAAABmHq87NgEgvIVd8r2mbVe+cSqEvPvlez4AAIA/AACAP0AU6j0iGHw+39GCvg3Rjr46C5S8MLIKvQAAAAAAAAAAzYpIvHsombreipO8L/2GPHzuhLvIEWs9AACAPwAAgD+a1qY823KzP24O/j4wsQ6+Mfs4vNZi9TsAAAAAAAAAAGbxPr46OYw/Ar9jvds0077YsIK+wrDRPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGTUwnH/96MAWyUTWkBjAF0lEdAnWH8w5/9YXV9lChoBkdAbTuRcu8K5WgHTQoBaAhHQJ1jf6+FlCl1fZQoaAZHQHKdUqhDgIhoB01qAWgIR0CdZU9OARTTdX2UKGgGR0BtgInfEXLvaAdNIQFoCEdAnWgslHBk7XV9lChoBkdAcVb5MURFqmgHTQUBaAhHQJ1oUYyfthN1fZQoaAZHQHNFzT4L1EpoB01IAWgIR0CdathRZU1idX2UKGgGR0BkeZXyRSxaaAdN6ANoCEdAnWxFFMIu5HV9lChoBkdAcJwgOz6acGgHS/poCEdAnWxZU96kZnV9lChoBkdAcofxSpBHC2gHTUsBaAhHQJ1s27btZ3d1fZQoaAZHQG2Qdw3o9s9oB01fAWgIR0CdbYxtYSxrdX2UKGgGR0BypHu8brC4aAdNIQFoCEdAnW3EGZ/kNnV9lChoBkdAcM3DvmYBvWgHS+VoCEdAnW42etjkMnV9lChoBkdAcKjwNLDhtWgHTSUBaAhHQJ1vFXMhX8x1fZQoaAZHQHEnp/b0voNoB01iAWgIR0CdbyFaSs8xdX2UKGgGR0Bt22NYKYzBaAdNdgFoCEdAnXLh6v7m+3V9lChoBkdAcFX8R+SbIGgHTTUBaAhHQJ1zNYcNpdt1fZQoaAZHQHC0OVPepGZoB00eAWgIR0Cdc1pDNQj2dX2UKGgGR0BwP4YLsruqaAdNEQFoCEdAnXQ0DdP+GXV9lChoBkdARrn0se4kNWgHS9JoCEdAnXoFjRUm2XV9lChoBkdAc7sYmb9ZR2gHTVIBaAhHQJ16fgccU/R1fZQoaAZHQHGDbZrYXftoB00sAWgIR0CdesHWjGkvdX2UKGgGR0Bw1MRf4REnaAdNHAFoCEdAnXyhF/hESnV9lChoBkdAcGfkz41xbWgHTRcBaAhHQJ19Ml1KXfJ1fZQoaAZHQG+/bT+ee4FoB01KAWgIR0CdfhxDLKV6dX2UKGgGR0ByX8vDgqEwaAdNjwFoCEdAnX57tiQT23V9lChoBkdAbbTsWO6un2gHTVIBaAhHQJ1+iO0b9611fZQoaAZHQHKa9ELH+61oB00tAWgIR0Cdf6ctoSL7dX2UKGgGR0BwqlBVuJk5aAdNhwFoCEdAnYILKV6eG3V9lChoBkdAa//oRIz3y2gHTQMBaAhHQJ2CK87IT5B1fZQoaAZHQHIrx55Z8rtoB00LAWgIR0CdgsraufVadX2UKGgGR0BhaArUb1h9aAdN6ANoCEdAnYN5wGW2PXV9lChoBkdAcFiyoXKr72gHTSUBaAhHQJ2DpCngpBp1fZQoaAZHQG+O4TK1XvJoB02lAWgIR0CdhF/XoTwldX2UKGgGR0ByA8F/x2B8aAdNJQFoCEdAnYTA5imVJXV9lChoBkdAbtKn1nM+vGgHS/loCEdAnYe2p++dsnV9lChoBkdARyf+OwPiDWgHS6hoCEdAnYpzd56dD3V9lChoBkdAcuGZjQRf4WgHS/toCEdAnYsXlOoHcHV9lChoBkdAcBmEfkmx+2gHTRYBaAhHQJ2NG8dxQzl1fZQoaAZHQHCmgOjIq9ZoB01jAWgIR0CdjY51Ng0CdX2UKGgGR0ByQtbfP5YYaAdNTAFoCEdAnY6JSBK+SXV9lChoBkdAcXwKpkwvg2gHTTEBaAhHQJ2QAAFPi1l1fZQoaAZHQHAj4ikfs/poB01uAWgIR0CdkQR3NcGDdX2UKGgGR0ByD9d/rjYJaAdNWgFoCEdAnZEdQ9A5aXV9lChoBkdAcPggWac7Q2gHTQMBaAhHQJ2RczLwF1V1fZQoaAZHQG6bLAYYR/VoB00hAWgIR0CdkhLsKLKndX2UKGgGR0BwxfrOZ9eAaAdNGAFoCEdAnZJMry1/lXV9lChoBkdAczI9PUKArmgHTTcBaAhHQJ2tIkona391fZQoaAZHQHAx3aJyhi9oB00/AWgIR0Cdr5brTpgUdX2UKGgGR0BuI38ZUDMeaAdL92gIR0Cdr7gnc+JQdX2UKGgGR0BxymRISUTtaAdN7QFoCEdAna/E/0NBnnV9lChoBkdAcjYvZh8YymgHTU0BaAhHQJ2wkfms/6h1fZQoaAZHQHB3luejEehoB00TAWgIR0Cds5dPci4bdX2UKGgGR0BwiRcPe54GaAdNAwFoCEdAnbSKDK5kLHV9lChoBkdAcJuk0Jng52gHS/toCEdAnbViD28IzHV9lChoBkdAcQ05TIeYD2gHTRMBaAhHQJ21wnG82751fZQoaAZHQGzHce0Xxe9oB01NAWgIR0CdthqesgdPdX2UKGgGR0BtSzzI3irDaAdNBwFoCEdAnbc0hRqGlHV9lChoBkdAbTTqv/zasmgHTRYBaAhHQJ244nx8UmF1fZQoaAZHQHHkPhIe5nVoB00hAWgIR0CduYawD/2kdX2UKGgGR0Bwi/4dp7C0aAdNPAFoCEdAnbtBV2iconV9lChoBkdAcJvUPQOWjWgHTTEBaAhHQJ27lsCT2WZ1fZQoaAZHQHCbv4IrvstoB005AWgIR0Cdu8MLF4s3dX2UKGgGR0BuCq5wwTM8aAdNTAFoCEdAnbz9SQ5my3V9lChoBkdAcW5gFotcwGgHTRIBaAhHQJ29CeK8+Rp1fZQoaAZHQHEhFANXo1VoB00cAWgIR0CdvWYR/ViGdX2UKGgGR0BwFBkd3jdYaAdNNwFoCEdAnb5n/5tWMnV9lChoBkdAbf6QqZtvXWgHTUABaAhHQJ2/0kpqh111fZQoaAZHQEUybiIcinpoB0vTaAhHQJ3BG4Vh1DB1fZQoaAZHQG/uojW07bNoB00tAWgIR0Cdwh5UtI07dX2UKGgGR0BwFIVdonKGaAdNSQFoCEdAncSUkGA09HV9lChoBkdAcbSAZsKsuGgHTTkBaAhHQJ3Elx//ech1fZQoaAZHQHEn9lum78NoB01BAWgIR0CdxWN7BwdbdX2UKGgGR0ByheQgcLjQaAdNEgFoCEdAncY5cs189nV9lChoBkdAcJ2Cpm29c2gHTWEBaAhHQJ3HcQiA2AJ1fZQoaAZHQHGCUhePaL5oB0v7aAhHQJ3HymfoRqZ1fZQoaAZHQHBSOd9Ujs5oB002AWgIR0Cdyyw0fozOdX2UKGgGR0ByeGBH09QoaAdNRAFoCEdAnctv+CK77XV9lChoBkdAczqIz3yqdmgHTXABaAhHQJ3MEOe8PFx1fZQoaAZHQHCppdWyTpxoB00uAWgIR0CdzGBz3h4udX2UKGgGR0Bvarw8W9DhaAdNRQFoCEdAnc2UcsDnvHV9lChoBkdAcF+hXbM5fmgHTScBaAhHQJ3NvmT1TR91fZQoaAZHQHIoDXarWAhoB0vkaAhHQJ3OVXlr/Kh1fZQoaAZHQHAksw1zhgpoB01jAWgIR0Cdz2cHnlnzdX2UKGgGR0Bx3Ux9G7SRaAdNOgFoCEdAndApcophF3V9lChoBkdAbaXWSU1Q7GgHTV4BaAhHQJ3Tm+TNdJJ1fZQoaAZHQHCV8cENe+poB00TAWgIR0Cd0+WMju8cdX2UKGgGR0BugcunMt9QaAdNIwFoCEdAndPviLl3hXV9lChoBkdAcLGuxKQJX2gHTTIBaAhHQJ3UqXXyy2R1fZQoaAZHQG9U5kCmuT1oB00iAWgIR0Cd1V1ivxH5dX2UKGgGR0BxCPe7+T/yaAdNHgFoCEdAndZJJf6XSnV9lChoBkdAcpKdUbT+emgHTSkBaAhHQJ3XMKlYU351fZQoaAZHQEMk4gieNDNoB0vOaAhHQJ3YuV9nbqR1fZQoaAZHQHEwUgfU4JhoB00aAWgIR0Cd2cMbFS88dX2UKGgGR0By/nZcs189aAdNHgFoCEdAndrQXuVopXV9lChoBkdAcL5zC1qnFmgHTTYBaAhHQJ3bA9ic5Kh1fZQoaAZHQG/mY+KTB69oB00zAWgIR0Cd3VXY150KdX2UKGgGR0BwnC8h9srNaAdNZQFoCEdAnd5IFRpDeHV9lChoBkdAb0uQlruYyGgHTR4BaAhHQJ3e7uZ1FH91fZQoaAZHQHEj8DW9US9oB01DAWgIR0Cd3/nM+u/2dX2UKGgGR0BzE7sHB1s+aAdL9GgIR0Cd3/8JUo8ZdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
53
  },
54
  "_n_updates": 248,
55
  "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
  "ent_coef": 0.01,
59
  "vf_coef": 0.5,
60
  "max_grad_norm": 0.5,
61
+ "batch_size": 32,
62
  "n_epochs": 4,
63
  "clip_range": {
64
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0670898834b57150becbbca95f45b470d1e3581fd5d61b2efa23996f84c06f2
3
  size 87993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b96b3b9fa9f167075fe29fedc5a4a0d5fa441fc8795896018d872f22a71db535
3
  size 87993
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67590f89e17155197c42783c6ad5e97582b751a47781869143c6fe395be166de
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:853d8b0c1aba8ab5d56b563ecf1e7c672355836286f0536a44f77aadde222e5d
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -159.9334051790622, "std_reward": 45.55013270357675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-08T01:06:23.625294"}
 
1
+ {"mean_reward": 253.62357031145515, "std_reward": 43.71177565817029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-08T03:38:49.929318"}