{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb498d2800>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686176301401692810, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADNPBz94Ieu/U4xav/paCz8Xaqk/dFq2P+/SUD/3M0K/nusiP9D/Or40P9M/4mMkPsIz6b7AeuQ/WYsjvxjXn707Mzs/yj38PyBqOj8QlQQ8xGESv+TqPb6ETO4+0GOzvILahL+dUus+2tnGPmmTUT8Qp4U/SJSBv2zQBD6M/AA+O7lpv1DnV78kMRE/K6IYwANcjz9sGfO7buDtP0Wi+r2DuWa+KDTNv9NkPz9SmXA/heCFP8GSir9vmhY/TkzLv3QQbL8WiZM/y50vP4EZNL+C2oS/QD8LwNrZxj6aWpy/tF3RPxrfcb+y2TY+EhPfPpbaAD835cs90ejaPxT6Z73UBSy9l25FP5hw0T9Lg4E9Y5QGQEBIK7yILgTAbdANP1gmJb486QJAIPcyPxjw1b7hcpe/NbT+PNi6gL6FGA8/gtqEv51S6z5lySTAaZNRP7tfgz4ZR8K/ocjAvnOO+D19krU/E0xgPwFuPb6zLba/l1uAP8ALEr+hv7E/ML0HQOjksr9IiEC82f9hO6awz76ao44/QJx3v6kTxT2uwV8/ygkgPzQegj51wZC/pnblvsWldj9APwvA2tnGPppanL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA3JQc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw7F3vQAAAABxOd6/AAAAAFaLCr4AAAAA1GLwPwAAAACr5cY9AAAAAKbv4D8AAAAAmbB+vQAAAABoGN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA01MftgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLYuejsAAAAA6kHdvwAAAAAuYDA9AAAAAAOu9T8AAAAAdNGNvQAAAAAFjus/AAAAAItNkD0AAAAAgQb3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPNtQ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICKEoy9AAAAAGUP/r8AAAAAupyVOwAAAADSBuY/AAAAAIdVj70AAAAAsf3rPwAAAADPcv49AAAAANLH778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvj5K2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI3JFPQAAAAAebvK/AAAAAAeBET0AAAAAiaT+PwAAAAAx/Ni9AAAAAO+H/j8AAAAAB22FPQAAAABcEvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8L+PZIxxmMAWyUTegDjAF0lEdAqnTCA+Y+jnV9lChoBkdAmUFpmyxA0WgHTegDaAhHQKp70tnwob51fZQoaAZHQJvSPM2WIGhoB03oA2gIR0CqfZc+aBqcdX2UKGgGR0CZyaWOIZZTaAdN6ANoCEdAqn+a6OHWSXV9lChoBkdAmW0Csr/bTWgHTegDaAhHQKqAxiUgSvl1fZQoaAZHQJkmdvo/zJ9oB03oA2gIR0CqiWmfwqiHdX2UKGgGR0CaFG127nPnaAdN6ANoCEdAqow1WZJCjXV9lChoBkdAmzSK5kK/mGgHTegDaAhHQKqPYUL2HtZ1fZQoaAZHQJrnHURWcSZoB03oA2gIR0CqkJdk8RthdX2UKGgGR0Cb7D57PY4AaAdN6ANoCEdAqpe6tRvWH3V9lChoBkdAmjhAEpy6tmgHTegDaAhHQKqZg3++/QB1fZQoaAZHQJuvbu0CzTpoB03oA2gIR0Cqm4m34Kx+dX2UKGgGR0CbsEul41P4aAdN6ANoCEdAqpywc7yQP3V9lChoBkdAnlXMvVVghWgHTegDaAhHQKqkFjTa0yB1fZQoaAZHQJg4u9wm3ORoB03oA2gIR0Cqpqnpr1ujdX2UKGgGR0Cb5zUDMeOoaAdN6ANoCEdAqqm7KaG5+nV9lChoBkdAmOZma6STyWgHTegDaAhHQKqrmmfoRqZ1fZQoaAZHQJ5C3HXEqDtoB03oA2gIR0Cqs6am4y44dX2UKGgGR0CaNzaJQ+EAaAdN6ANoCEdAqrVxa9sabXV9lChoBkdAm4Q/H1e0HGgHTegDaAhHQKq3gL5ylvZ1fZQoaAZHQJzv6C/XXiBoB03oA2gIR0CquKzEBKcvdX2UKGgGR0CaugGdI5HVaAdN6ANoCEdAqr/NYp2ECnV9lChoBkdAmmgv4REncGgHTegDaAhHQKrBpFS88Ld1fZQoaAZHQJ7iz2nKnvVoB03oA2gIR0CqxHVeBxxUdX2UKGgGR0CeHyoaDPGAaAdN6ANoCEdAqsYkTURWcXV9lChoBkdAnfKgqVhTfmgHTegDaAhHQKrPlo371qZ1fZQoaAZHQJ7fpdjXnQpoB03oA2gIR0Cq0WDVhCtzdX2UKGgGR0CesnnFo+OfaAdN6ANoCEdAqtNsJOWSlnV9lChoBkdAnI7vs/pt8GgHTegDaAhHQKrUmKoAGSp1fZQoaAZHQJwkaZof0VdoB03oA2gIR0Cq2+IrFwT/dX2UKGgGR0CgbC63RXwLaAdN6ANoCEdAqt2fied073V9lChoBkdAnUwH+hoM8mgHTegDaAhHQKrflsUqQRx1fZQoaAZHQJ93g6BAfMhoB03oA2gIR0Cq4Nt2ki2VdX2UKGgGR0CdWlDVH4GmaAdN6ANoCEdAqutzzd1uBXV9lChoBkdAlyjah+OOsGgHTegDaAhHQKrtQzRhMJx1fZQoaAZHQJws6SLZSNxoB03oA2gIR0Cq70SPEKmbdX2UKGgGR0CcxitRvWH2aAdN6ANoCEdAqvBu/Dcdo3V9lChoBkdAnc87r5ZbIWgHTegDaAhHQKr3rc2R7qp1fZQoaAZHQJ5th1r6+FloB03oA2gIR0Cq+XyKNyYHdX2UKGgGR0Ca3fxsl9jPaAdN6ANoCEdAqvuOQ6p5vHV9lChoBkdAluNRc/t6X2gHTegDaAhHQKr8w+8oQWh1fZQoaAZHQJ9dDQJHAh1oB03oA2gIR0CrBhQKSgXedX2UKGgGR0Cdiv4OMERraAdN6ANoCEdAqwjISpR4yHV9lChoBkdAnSO4IOYplWgHTegDaAhHQKsLMqCpWFN1fZQoaAZHQKBBUlP8AJdoB03oA2gIR0CrDFsV+I/JdX2UKGgGR0CeWSJAt4A0aAdN6ANoCEdAqxNiVQhwEXV9lChoBkdAm25ZhrnDBWgHTegDaAhHQKsVMC7sfJV1fZQoaAZHQJDdBm/WUbFoB03oA2gIR0CrFz+f7JnydX2UKGgGR0Cc5I7v5P/JaAdN6ANoCEdAqxiDdtVJc3V9lChoBkdAmttq1PWQOmgHTegDaAhHQKsgt34bjtJ1fZQoaAZHQHk3u9OARTVoB03oA2gIR0CrI4qzAvcrdX2UKGgGR0CB6oBS1maqaAdN6ANoCEdAqybPssxwhnV9lChoBkdAgxfZ0bLlm2gHTegDaAhHQKsomT3Zf2N1fZQoaAZHQJU4VUHY6GRoB03oA2gIR0CrL9ShakhzdX2UKGgGR0CVdoSNfgJkaAdN6ANoCEdAqzGgsAeaKHV9lChoBkdAliwGv4dp7GgHTegDaAhHQKsztMr3Cbd1fZQoaAZHQJWfsFINEw5oB03oA2gIR0CrNOHmA9V4dX2UKGgGR0B+rzTDwYtQaAdN6ANoCEdAqzwxJAdGRXV9lChoBkdAluCTcEeQuGgHTegDaAhHQKs+vkvsZ511fZQoaAZHQJWw0nOSntRoB03oA2gIR0CrQb+r+5vtdX2UKGgGR0CBKHycTakAaAdN6ANoCEdAq0OYwyqMnHV9lChoBkdAnaPxIJ7b+WgHTegDaAhHQKtMAnc+JP91fZQoaAZHQJsOPHWBjF1oB03oA2gIR0CrTcEIX0oSdX2UKGgGR0CcDW8EFGG3aAdN6ANoCEdAq0/AZTAFgXV9lChoBkdAnOCwiNbTt2gHTegDaAhHQKtQ6mb9ZRt1fZQoaAZHQJu1keyRjjJoB03oA2gIR0CrWBgNPP9ldX2UKGgGR0CeLd2GIsRQaAdN6ANoCEdAq1ngOOKfnXV9lChoBkdAnShNiYsunWgHTegDaAhHQKtcKrDqGDd1fZQoaAZHQJpwo0gr6LxoB03oA2gIR0CrXcvG6wt8dX2UKGgGR0CfMZUX531SaAdN6ANoCEdAq2eo5HVf/nV9lChoBkdAoMQD5wfhdmgHTegDaAhHQKtpbs/IKdB1fZQoaAZHQJl9UrGza9NoB03oA2gIR0Cra3kZaV2SdX2UKGgGR0CY9JmtyPuHaAdN6ANoCEdAq2yyZH/cWXV9lChoBkdAna/yW7e2u2gHTegDaAhHQKtzzDCxeLN1fZQoaAZHQJw91xMnJDFoB03oA2gIR0CrdZrDhtLtdX2UKGgGR0CdcTOX3QD3aAdN6ANoCEdAq3elke6qbXV9lChoBkdAmb0AQlKK52gHTegDaAhHQKt40Q9zOop1fZQoaAZHQJ56l8zAN5NoB03oA2gIR0Crgsb1ZkkKdX2UKGgGR0CgPZocR15jaAdN6ANoCEdAq4VCWTot+XV9lChoBkdAmkfjP4VRDWgHTegDaAhHQKuHVLaEi+t1fZQoaAZHQJ+0CO801qFoB03oA2gIR0CriH33g1m8dX2UKGgGR0CdcbR7JGONaAdN6ANoCEdAq4+p5E+gUXV9lChoBkdAm38NWluWKWgHTegDaAhHQKuRcrJbMX91fZQoaAZHQJnhs1EVnEloB03oA2gIR0Crk4GNR3vAdX2UKGgGR0CY4JJQLux9aAdN6ANoCEdAq5S1A7gbZXV9lChoBkdAk6G6EOAiFGgHTegDaAhHQKudTD6WPcV1fZQoaAZHQJ0dzuNPxhFoB03oA2gIR0CroBA44p+ddX2UKGgGR0Cgadj0cwQEaAdN6ANoCEdAq6NEN+b3GnV9lChoBkdAoHinwuuie2gHTegDaAhHQKukcqrBCUp1fZQoaAZHQJ2vp1EE1VJoB03oA2gIR0Crq7Pmgam5dX2UKGgGR0CglZ0eU6geaAdN6ANoCEdAq614N3GGVXV9lChoBkdAnUkxGlQ/HGgHTegDaAhHQKuvgJDVpbl1fZQoaAZHQJ7mQo5PuXxoB03oA2gIR0CrsLHxJ/XodX2UKGgGR0CdHinVoYelaAdN6ANoCEdAq7hQVGkN4XV9lChoBkdAncqkgr6LwWgHTegDaAhHQKu61KZDzAh1fZQoaAZHQJTHlENOM2poB03oA2gIR0Crveqp1ie/dX2UKGgGR0CZjkOTJQtSaAdN6ANoCEdAq7+1ZvDP4XV9lChoBkdAhnmckD6nBWgHTegDaAhHQKvHuZRbbDd1fZQoaAZHQJVzw/KQq7RoB03oA2gIR0CryYn58BuGdX2UKGgGR0CVoI0iyIHkaAdN6ANoCEdAq8uEFOfukXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}