--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-zindi_tweets results: [] --- # distilbert-base-uncased-finetuned-zindi_tweets This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3203 - Accuracy: 0.9168 - F1: 0.9168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4224 | 1.0 | 67 | 0.2924 | 0.8894 | 0.8893 | | 0.2096 | 2.0 | 134 | 0.2632 | 0.9055 | 0.9055 | | 0.1329 | 3.0 | 201 | 0.2744 | 0.9102 | 0.9101 | | 0.1016 | 4.0 | 268 | 0.2868 | 0.9055 | 0.9054 | | 0.0752 | 5.0 | 335 | 0.2896 | 0.9140 | 0.9140 | | 0.0454 | 6.0 | 402 | 0.3077 | 0.9178 | 0.9178 | | 0.0305 | 7.0 | 469 | 0.3185 | 0.9149 | 0.9149 | | 0.0298 | 8.0 | 536 | 0.3203 | 0.9168 | 0.9168 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1