--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: 07842df3-503d-4d79-9f21-35a929ea2e5a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f69997622e88b2e2_train_data.json ds_type: json format: custom path: /workspace/input_data/f69997622e88b2e2_train_data.json type: field_input: Query field_instruction: Prompt field_output: Response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: oldiday/07842df3-503d-4d79-9f21-35a929ea2e5a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 8 mlflow_experiment_name: /tmp/f69997622e88b2e2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 6ab3de9b-c6f7-4825-831d-3a8790bdd87a wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: 6ab3de9b-c6f7-4825-831d-3a8790bdd87a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 07842df3-503d-4d79-9f21-35a929ea2e5a This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.4169 | | 8.7825 | 0.0090 | 50 | 2.1226 | | 8.3004 | 0.0181 | 100 | 2.0489 | | 8.2362 | 0.0271 | 150 | 1.9942 | | 8.1521 | 0.0361 | 200 | 1.9561 | | 7.9439 | 0.0451 | 250 | 1.9264 | | 7.9633 | 0.0542 | 300 | 1.9012 | | 7.848 | 0.0632 | 350 | 1.8796 | | 7.9365 | 0.0722 | 400 | 1.8597 | | 7.8769 | 0.0813 | 450 | 1.8424 | | 8.1112 | 0.0903 | 500 | 1.8346 | | 7.7599 | 0.0993 | 550 | 1.8292 | | 8.0428 | 0.1083 | 600 | 1.8307 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1