--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 266a0e60-efd6-47e8-8ac8-d783ca882e00 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb16ec6f6755cae7_train_data.json ds_type: json format: custom path: /workspace/input_data/bb16ec6f6755cae7_train_data.json type: field_instruction: update_snippet field_output: final_code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/266a0e60-efd6-47e8-8ac8-d783ca882e00 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/bb16ec6f6755cae7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 4d7b33c8-c3d1-4ea6-9289-c00539df9117 wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: 4d7b33c8-c3d1-4ea6-9289-c00539df9117 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 266a0e60-efd6-47e8-8ac8-d783ca882e00 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0059 | 1 | 0.7228 | | 0.7719 | 0.0533 | 9 | 0.6912 | | 0.7031 | 0.1065 | 18 | 0.6377 | | 0.6471 | 0.1598 | 27 | 0.6183 | | 0.6767 | 0.2130 | 36 | 0.6061 | | 0.6385 | 0.2663 | 45 | 0.5974 | | 0.5908 | 0.3195 | 54 | 0.5911 | | 0.6399 | 0.3728 | 63 | 0.5868 | | 0.6308 | 0.4260 | 72 | 0.5840 | | 0.5583 | 0.4793 | 81 | 0.5827 | | 0.5684 | 0.5325 | 90 | 0.5819 | | 0.6499 | 0.5858 | 99 | 0.5818 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1