---
library_name: peft
license: llama3.2
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5cc7e326-b0be-43e4-af92-aa4134de2dd3
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2473a580e21e684a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2473a580e21e684a_train_data.json
type:
field_input: ground_knowledge
field_instruction: query
field_output: hit_knowledge
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: oldiday/5cc7e326-b0be-43e4-af92-aa4134de2dd3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/2473a580e21e684a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: bba600cc-9959-4989-96cb-bd88b8ecffb8
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: bba600cc-9959-4989-96cb-bd88b8ecffb8
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
# 5cc7e326-b0be-43e4-af92-aa4134de2dd3
This model is a fine-tuned version of [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0005 | 1 | 2.0430 |
| 2.0411 | 0.0042 | 9 | 2.0034 |
| 1.7498 | 0.0083 | 18 | 1.7798 |
| 1.7469 | 0.0125 | 27 | 1.7146 |
| 1.6712 | 0.0167 | 36 | 1.6825 |
| 1.6908 | 0.0208 | 45 | 1.6609 |
| 1.635 | 0.0250 | 54 | 1.6492 |
| 1.6188 | 0.0292 | 63 | 1.6416 |
| 1.6806 | 0.0333 | 72 | 1.6370 |
| 1.6951 | 0.0375 | 81 | 1.6343 |
| 1.696 | 0.0417 | 90 | 1.6338 |
| 1.5216 | 0.0458 | 99 | 1.6336 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1