--- language: - en tags: - pytorch - ner - text generation - seq2seq inference: false license: mit datasets: - conll2003 metrics: - f1 --- # t5-base-qa-ner-conll Unofficial implementation of [InstructionNER](https://arxiv.org/pdf/2203.03903v1.pdf). t5-base model tuned on conll2003 dataset. https://github.com/ovbystrova/InstructionNER ## Inference ```shell git clone https://github.com/ovbystrova/InstructionNER cd InstructionNER ``` ```python from instruction_ner.model import Model model = Model( model_path_or_name="olgaduchovny/t5-base-ner-mit-movie", tokenizer_path_or_name="olgaduchovny/t5-base-ner-mit-movie" ) options = [ "ACTOR", "AWARD", "CHARACTER", "DIRECTOR", "GENRE", "OPINION", "ORIGIN", "PLOT", "QUOTE", "RELATIONSHIP", "SOUNDTRACK", "YEAR" ] instruction = "please extract entities and their types from the input sentence, " \ "all entity types are in options" text = "are there any good romantic comedies out right now" generation_kwargs = { "num_beams": 2, "max_length": 128 } pred_spans = model.predict( text=text, generation_kwargs=generation_kwargs, instruction=instruction, options=options ) >>> [(19, 36, 'GENRE'), (41, 50, 'YEAR')] ```