File size: 14,890 Bytes
d916d2a |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x784654cb9b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784654cbcc40>"}, "verbose": 1, "policy_kwargs": {"n_critics": 1}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700568623764477078, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAkppNvKnx7T0VpWw+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01254906 0.11618359 0.23109849]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 2573, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv/AAAAAAAACMAWyUSwKMAXSUR0Bh62Pgeii7dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh7Fq+JxecdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bh7VOmBOHndX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh7hakhzNmdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bh7whyKekIdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0Bh78DW9US7dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0Bh8Q+UyHmBdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh8iMkyDZldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bh8xJVbRnfdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0Bh87sF+uvEdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0Bh9H7aZhKEdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh9ZNO/L1VdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh9rW5H3DfdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh99Jtix3WdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh+OQfZElWdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh+iQxN7BwdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh+1sxfv4NdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh/HiR4hUzdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0Bh/gFFDv3KdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Bh/2dAgPmQdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiAB0fYBeYdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiAWfAbhm5dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiAs5QxesxdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiBE0FbFCLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiBTdFfAsTdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiBnIfbKzSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiB3/m1YyPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiCDR6Ww/xdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiCNFMIu5CdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0BiCi5VfeDWdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiC+GucMEzdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiDUILPUrkdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiDnAEdNnHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiD6oAGSpzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiEKoKlYU4dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiEXAqNIbwdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiEsCcPOIJdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiFAqd6LOzdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiFNoakyk9dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiFizsyBTXdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiFupZOi35dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiF3YlIEr5dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiGF92HLzPdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiGdfu1F6SdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiGvQpnYg8dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiG8BjnV5KdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiHJNCZ4OddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiHYn6VMVUdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiHkMAmzBzdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiH52fTTfBdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiIDr/sE7odX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiIazPa+N+dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiItgSeyzHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiJAEEC/47dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiJSSidrftdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0BiJt/c32mIdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiKJ1aGHpKdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiKfNHH3lCdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiKywwCbMHdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiLMz9CNS7dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiLa0QbuMNdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiLvDcdo38dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiMCFdszl+dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiMYa72+PBdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0BiMtIbwSamdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiNIRh+fAcdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiNf4dp7C0dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiN247Rv3rdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiONAgPmPpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiOc1XNke7dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiOooy9EkTdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiO3dM0xdqdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiPDhrFfiQdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiPTx5LRKIdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiPogTyrggdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiP/t4RmK7dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiQT/CIk7fdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiQqCDmKZVdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiQ7+aScLCdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiRPuogmqpdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiRc/W1+iKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiRsWykbgkdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiR2rKeTV2dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiSNycTakAdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiSiZc9nscdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiSvnQpnYhdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiTBMDfWMCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiTSZ4Oc2BdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiTYpKBd2QdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiTkCDEm6YdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiT6X6ZYxMdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0BiUOKMvRJFdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiUhRdhRZVdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiUqu4gA6udX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiU6/CZWq+dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiVKEcsDnvdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0BiVXgccU/OdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0BiVnkWAPNFdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiVyQq7ROUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0BiV8AxSHdodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 9900, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg7ihGUHLnFUrhOH0ZWJDKyOWuyAIwDaW5jlIoQy6O//4OIuHFxhpO1yVfsVXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 100, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x784654cba7a0>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x784654cba830>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x784654cba8c0>", "set_env": "<function HerReplayBuffer.set_env at 0x784654cba950>", "add": "<function HerReplayBuffer.add at 0x784654cba9e0>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x784654cbaa70>", "sample": "<function HerReplayBuffer.sample at 0x784654cbab00>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x784654cbab90>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x784654cbac20>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x784654cbacb0>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x784654cbad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784654cbfe40>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future"}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}} |