--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed0 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed0 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3804 - Accuracy: 0.9146 - Accuracy Sensor 0: 0.9046 - Auroc Sensor 0: 0.9551 - Accuracy Sensor 1: 0.9170 - Auroc Sensor 1: 0.9423 - Accuracy Sensor 2: 0.9398 - Auroc Sensor 2: 0.9764 - Accuracy Aggregated: 0.8970 - Auroc Aggregated: 0.9614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2892 | 0.9997 | 781 | 0.3250 | 0.8582 | 0.8459 | 0.8992 | 0.8448 | 0.8967 | 0.8836 | 0.9420 | 0.8584 | 0.9095 | | 0.1886 | 1.9994 | 1562 | 0.3029 | 0.8740 | 0.8822 | 0.9276 | 0.8798 | 0.9227 | 0.9057 | 0.9626 | 0.8284 | 0.9363 | | 0.1237 | 2.9990 | 2343 | 0.2722 | 0.9012 | 0.8803 | 0.9463 | 0.9087 | 0.9354 | 0.9390 | 0.9761 | 0.8767 | 0.9562 | | 0.0683 | 4.0 | 3125 | 0.3122 | 0.9088 | 0.8871 | 0.9520 | 0.9166 | 0.9417 | 0.9334 | 0.9757 | 0.8980 | 0.9590 | | 0.0322 | 4.9984 | 3905 | 0.3804 | 0.9146 | 0.9046 | 0.9551 | 0.9170 | 0.9423 | 0.9398 | 0.9764 | 0.8970 | 0.9614 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1