--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed0 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed0 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.9138 - Accuracy Sensor 0: 0.9051 - Auroc Sensor 0: 0.9644 - Accuracy Sensor 1: 0.9165 - Auroc Sensor 1: 0.9454 - Accuracy Sensor 2: 0.9324 - Auroc Sensor 2: 0.9773 - Accuracy Aggregated: 0.9010 - Auroc Aggregated: 0.9670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2891 | 0.9997 | 781 | 0.3732 | 0.8385 | 0.8367 | 0.9076 | 0.8089 | 0.9026 | 0.8669 | 0.9409 | 0.8414 | 0.9123 | | 0.179 | 1.9994 | 1562 | 0.3287 | 0.8639 | 0.8532 | 0.9392 | 0.8835 | 0.9339 | 0.8852 | 0.9648 | 0.8338 | 0.9430 | | 0.1181 | 2.9990 | 2343 | 0.2500 | 0.9084 | 0.8967 | 0.9587 | 0.9138 | 0.9382 | 0.9327 | 0.9744 | 0.8906 | 0.9623 | | 0.0614 | 4.0 | 3125 | 0.3212 | 0.9095 | 0.8961 | 0.9636 | 0.9145 | 0.9457 | 0.9238 | 0.9774 | 0.9036 | 0.9662 | | 0.0267 | 4.9984 | 3905 | 0.3882 | 0.9138 | 0.9051 | 0.9644 | 0.9165 | 0.9454 | 0.9324 | 0.9773 | 0.9010 | 0.9670 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1