oliverdk commited on
Commit
2b97f0b
1 Parent(s): 2a1d8c7

Upload CodeGenMeasurementPredictor

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "multirun/2024-12-16/09-38-37/0/checkpoint-3905",
3
+ "activation_function": "gelu_new",
4
+ "aggregate_weight": 0.3,
5
+ "architectures": [
6
+ "CodeGenMeasurementPredictor"
7
+ ],
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_code_gen_measuremet_pred.CodeGenMeasurementPredictorConfig",
11
+ "AutoModelForSequenceClassification": "modeling_code_gen_measurement_pred.CodeGenMeasurementPredictor"
12
+ },
13
+ "bos_token_id": 1,
14
+ "emb_dim": 1024,
15
+ "embd_pdrop": 0.0,
16
+ "eos_token_id": 50256,
17
+ "gradient_checkpointing": false,
18
+ "initializer_range": 0.02,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "model_type": "codegen_mp",
21
+ "n_ctx": 2048,
22
+ "n_embd": 1024,
23
+ "n_head": 16,
24
+ "n_inner": null,
25
+ "n_layer": 20,
26
+ "n_positions": 2048,
27
+ "n_sensors": 3,
28
+ "resid_pdrop": 0.0,
29
+ "rotary_dim": 32,
30
+ "scale_attn_weights": true,
31
+ "sensor_token": " omit",
32
+ "sensor_token_id": 42848,
33
+ "sensors_weight": 0.7,
34
+ "summary_activation": null,
35
+ "summary_first_dropout": 0.1,
36
+ "summary_proj_to_labels": true,
37
+ "summary_type": "cls_index",
38
+ "summary_use_proj": true,
39
+ "task_specific_params": {
40
+ "text-generation": {
41
+ "do_sample": true,
42
+ "max_length": 50,
43
+ "temperature": 1.0
44
+ }
45
+ },
46
+ "tie_word_embeddings": false,
47
+ "tokenizer_class": "GPT2Tokenizer",
48
+ "torch_dtype": "float32",
49
+ "transformers_version": "4.41.0",
50
+ "use_aggregated": true,
51
+ "use_cache": false,
52
+ "vocab_size": 51200
53
+ }
configuration_code_gen_measuremet_pred.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.codegen import CodeGenConfig
2
+ from .configuration_measurement_pred import MeasurementPredictorConfig
3
+
4
+ class CodeGenMeasurementPredictorConfig(MeasurementPredictorConfig, CodeGenConfig):
5
+ model_type = "codegen_mp"
6
+ def __init__(self, **kwargs):
7
+ kwargs["sensor_token_id"] = 42848
8
+ super().__init__(**kwargs)
9
+
10
+ def get_emb_dim(self):
11
+ return self.n_embd
configuration_measurement_pred.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from transformers import PretrainedConfig
3
+
4
+ class MeasurementPredictorConfig(PretrainedConfig):
5
+
6
+ def __init__(
7
+ self,
8
+ sensor_token=" omit",
9
+ sensor_token_id=None, # 35991
10
+ n_sensors=3,
11
+ use_aggregated=True,
12
+ sensors_weight = 0.7,
13
+ aggregate_weight=0.3,
14
+ **kwargs
15
+ ):
16
+ self.sensor_token = sensor_token
17
+ self.sensor_token_id = sensor_token_id
18
+ self.n_sensors = n_sensors
19
+ self.use_aggregated = use_aggregated
20
+ self.sensors_weight = sensors_weight
21
+ self.aggregate_weight = aggregate_weight
22
+ super().__init__(**kwargs)
23
+ self.emb_dim = self.get_emb_dim()
24
+
25
+ @abstractmethod
26
+ def get_emb_dim(self):
27
+ raise NotImplementedError
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db46790e772f6c64c2feada56506ffb0cddfc2c34220f42811ed42410ffa2ba
3
+ size 1216963976
modeling_code_gen_measurement_pred.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.codegen import CodeGenPreTrainedModel, CodeGenModel
2
+
3
+ from .modeling_measurement_pred import MeasurementPredictorMixin
4
+ from .configuration_code_gen_measuremet_pred import CodeGenMeasurementPredictorConfig
5
+
6
+
7
+ class CodeGenMeasurementPredictor(CodeGenPreTrainedModel, MeasurementPredictorMixin):
8
+ config_class = CodeGenMeasurementPredictorConfig
9
+
10
+ def __init__(self, config):
11
+ super().__init__(config)
12
+ self.transformer = CodeGenModel(config)
13
+ self.post_init()
modeling_measurement_pred.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from torch.nn import BCEWithLogitsLoss
5
+ from transformers import PreTrainedModel, PreTrainedTokenizer
6
+ from transformers.modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
7
+
8
+ class MeasurementPredictorMixin(PreTrainedModel):
9
+
10
+ def __init__(self, config):
11
+ super().__init__(config)
12
+ self.sensor_token = config.sensor_token
13
+ self.sensor_token_id = config.sensor_token_id
14
+ self.n_sensors = config.n_sensors
15
+ self.sensor_probes = torch.nn.ModuleList([
16
+ torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
17
+ ])
18
+ self.use_aggregated = config.use_aggregated
19
+ if config.use_aggregated:
20
+ self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
21
+ self.sensors_weight = config.sensors_weight
22
+ self.aggregate_weight = config.aggregate_weight
23
+
24
+ def check_tokenizer(self, tokenizer: PreTrainedTokenizer):
25
+ sensor_token_id = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(self.sensor_token))[0]
26
+ assert sensor_token_id == self.sensor_token_id
27
+
28
+ def set_sensor_token(self, sensor_token: str, tokenizer: PreTrainedTokenizer):
29
+ sensor_token_id = tokenizer.tokenize(sensor_token)[0]
30
+ self.sensor_token = sensor_token
31
+ self.sensor_token_id = sensor_token_id
32
+
33
+ def forward(
34
+ self,
35
+ input_ids: Optional[torch.LongTensor] = None,
36
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
37
+ attention_mask: Optional[torch.FloatTensor] = None,
38
+ position_ids: Optional[torch.LongTensor] = None,
39
+ head_mask: Optional[torch.FloatTensor] = None,
40
+ inputs_embeds: Optional[torch.FloatTensor] = None,
41
+ labels: Optional[torch.LongTensor] = None,
42
+ use_cache: Optional[bool] = None,
43
+ output_attentions: Optional[bool] = None,
44
+ output_hidden_states: Optional[bool] = None,
45
+ return_dict: Optional[bool] = None,
46
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
47
+ r"""
48
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
49
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
50
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
51
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
52
+ """
53
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
54
+
55
+ base_model_output: BaseModelOutputWithPast = self.base_model(
56
+ input_ids,
57
+ past_key_values=past_key_values,
58
+ attention_mask=attention_mask,
59
+ position_ids=position_ids,
60
+ head_mask=head_mask,
61
+ inputs_embeds=inputs_embeds,
62
+ use_cache=use_cache,
63
+ output_attentions=output_attentions,
64
+ output_hidden_states=output_hidden_states,
65
+ return_dict=return_dict,
66
+ )
67
+ flat_tensor_token_idxs = (input_ids == self.sensor_token_id).nonzero(as_tuple=True)[1]
68
+ tensor_token_idxs = flat_tensor_token_idxs.view(-1, self.n_sensors)
69
+ sensor_embs = base_model_output.last_hidden_state.gather(
70
+ 1, tensor_token_idxs.unsqueeze(-1).expand(-1, -1, self.config.emb_dim)
71
+ )
72
+ assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors, self.config.emb_dim), f"{sensor_embs.shape} != {(input_ids.shape[0], self.n_sensors, self.config.emb_dim)}"
73
+ sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
74
+ for i in range(self.n_sensors)], dim=-1)
75
+ logits = sensor_logits
76
+
77
+ if self.use_aggregated:
78
+ last_emb = base_model_output.last_hidden_state[:, -1, :]
79
+ aggregate_logits = self.aggregate_probe(last_emb)
80
+ logits = torch.concat([logits, aggregate_logits], dim=-1)
81
+
82
+ loss = None
83
+ if labels is not None:
84
+ loss_fct = BCEWithLogitsLoss()
85
+ sensor_loss = loss_fct(sensor_logits, labels[:, :self.n_sensors]) * self.sensors_weight
86
+ loss = sensor_loss
87
+ if self.use_aggregated: #TOOD: should be use aggregate
88
+ aggregate_loss = loss_fct(aggregate_logits, labels[:, -1:]) * self.aggregate_weight
89
+ loss += aggregate_loss
90
+
91
+ if not return_dict:
92
+ output = (logits, ) + base_model_output[1:]
93
+ return ((loss,) + output) if loss is not None else output
94
+
95
+ return SequenceClassifierOutputWithPast(
96
+ loss=loss,
97
+ logits=logits,
98
+ past_key_values=base_model_output.past_key_values,
99
+ hidden_states=base_model_output.hidden_states,
100
+ attentions=base_model_output.attentions,
101
+ )
102
+