--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codegen-350M-mono-measurement_pred-diamonds-seed1 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4208 - Accuracy: 0.9039 - Accuracy Sensor 0: 0.8951 - Auroc Sensor 0: 0.9544 - Accuracy Sensor 1: 0.9114 - Auroc Sensor 1: 0.9468 - Accuracy Sensor 2: 0.9304 - Auroc Sensor 2: 0.9752 - Accuracy Aggregated: 0.8787 - Auroc Aggregated: 0.9601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2957 | 0.9997 | 781 | 0.3062 | 0.8755 | 0.8833 | 0.8927 | 0.8724 | 0.8925 | 0.8966 | 0.9193 | 0.8494 | 0.8893 | | 0.1972 | 1.9994 | 1562 | 0.2602 | 0.8922 | 0.8898 | 0.9341 | 0.9076 | 0.9355 | 0.9133 | 0.9617 | 0.8582 | 0.9350 | | 0.1195 | 2.9990 | 2343 | 0.2889 | 0.8943 | 0.8747 | 0.9475 | 0.9022 | 0.9347 | 0.9168 | 0.9700 | 0.8835 | 0.9516 | | 0.0784 | 4.0 | 3125 | 0.3078 | 0.9104 | 0.9084 | 0.9574 | 0.9125 | 0.9486 | 0.9380 | 0.9760 | 0.8828 | 0.9611 | | 0.0347 | 4.9984 | 3905 | 0.4208 | 0.9039 | 0.8951 | 0.9544 | 0.9114 | 0.9468 | 0.9304 | 0.9752 | 0.8787 | 0.9601 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1