--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed2 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed2 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4189 - Accuracy: 0.9210 - Accuracy Sensor 0: 0.9298 - Auroc Sensor 0: 0.9628 - Accuracy Sensor 1: 0.9259 - Auroc Sensor 1: 0.9711 - Accuracy Sensor 2: 0.9266 - Auroc Sensor 2: 0.9619 - Accuracy Aggregated: 0.9019 - Auroc Aggregated: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2961 | 0.9997 | 781 | 0.4800 | 0.7906 | 0.8122 | 0.9078 | 0.7952 | 0.9255 | 0.8160 | 0.9280 | 0.7391 | 0.8990 | | 0.1901 | 1.9994 | 1562 | 0.3107 | 0.8847 | 0.9115 | 0.9491 | 0.8649 | 0.9604 | 0.8951 | 0.9532 | 0.8674 | 0.9397 | | 0.1154 | 2.9990 | 2343 | 0.3076 | 0.9009 | 0.9154 | 0.9575 | 0.8946 | 0.9656 | 0.9255 | 0.9576 | 0.8682 | 0.9492 | | 0.0708 | 4.0 | 3125 | 0.3162 | 0.9207 | 0.9297 | 0.9621 | 0.9245 | 0.9710 | 0.9285 | 0.9619 | 0.9001 | 0.9587 | | 0.0314 | 4.9984 | 3905 | 0.4189 | 0.9210 | 0.9298 | 0.9628 | 0.9259 | 0.9711 | 0.9266 | 0.9619 | 0.9019 | 0.9592 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1