End of training
Browse files- .hydra/config.yaml +17 -0
- .hydra/hydra.yaml +182 -0
- .hydra/overrides.yaml +1 -0
- README.md +57 -180
- added_tokens.json +40 -0
- config.json +2 -1
- configuration_measurement_pred.py +2 -3
- logs/events.out.tfevents.1734449259.gail.ist.berkeley.edu.2164205.0 +3 -0
- merges.txt +0 -0
- model.safetensors +1 -1
- modeling_measurement_pred.py +14 -12
- sensor_loc_finder.py +17 -0
- sensor_loc_reg.py +10 -0
- sensor_loc_stories.py +46 -0
- sensor_locs_from_token.py +16 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +327 -0
- train.log +1 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.hydra/config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
dataset_name: redwoodresearch/diamonds-seed3
|
3 |
+
model_type: codegen
|
4 |
+
pretrained_model_name: Salesforce/codegen-350M-mono
|
5 |
+
max_length: 1024
|
6 |
+
hparams:
|
7 |
+
learning_rate: 2.0e-05
|
8 |
+
weight_decay: 0.02
|
9 |
+
lr_scheduler_type: cosine
|
10 |
+
warmup_steps: 64
|
11 |
+
effective_batch_size: 32
|
12 |
+
num_train_epochs: 5
|
13 |
+
per_device_train_batch_size: 4
|
14 |
+
per_device_eval_batch_size: 4
|
15 |
+
fp16: true
|
16 |
+
dataset_len: null
|
17 |
+
push_to_hub: true
|
.hydra/hydra.yaml
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hydra:
|
2 |
+
run:
|
3 |
+
dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
+
sweep:
|
5 |
+
dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
6 |
+
subdir: ${hydra.job.num}
|
7 |
+
launcher:
|
8 |
+
submitit_folder: ${hydra.sweep.dir}/.submitit/%j
|
9 |
+
timeout_min: 1440
|
10 |
+
cpus_per_task: null
|
11 |
+
gpus_per_node: null
|
12 |
+
tasks_per_node: 1
|
13 |
+
mem_gb: 16
|
14 |
+
nodes: 1
|
15 |
+
name: ${hydra.job.name}
|
16 |
+
stderr_to_stdout: false
|
17 |
+
_target_: hydra_plugins.hydra_submitit_launcher.submitit_launcher.SlurmLauncher
|
18 |
+
partition: null
|
19 |
+
qos: high
|
20 |
+
comment: null
|
21 |
+
constraint: null
|
22 |
+
exclude: ddpg.ist.berkeley.edu,dqn.ist.berkeley.edu
|
23 |
+
gres: gpu:A6000:1
|
24 |
+
cpus_per_gpu: null
|
25 |
+
gpus_per_task: null
|
26 |
+
mem_per_gpu: null
|
27 |
+
mem_per_cpu: null
|
28 |
+
account: null
|
29 |
+
signal_delay_s: 120
|
30 |
+
max_num_timeout: 0
|
31 |
+
additional_parameters: {}
|
32 |
+
array_parallelism: 256
|
33 |
+
setup: null
|
34 |
+
sweeper:
|
35 |
+
_target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
|
36 |
+
max_batch_size: null
|
37 |
+
params: null
|
38 |
+
help:
|
39 |
+
app_name: ${hydra.job.name}
|
40 |
+
header: '${hydra.help.app_name} is powered by Hydra.
|
41 |
+
|
42 |
+
'
|
43 |
+
footer: 'Powered by Hydra (https://hydra.cc)
|
44 |
+
|
45 |
+
Use --hydra-help to view Hydra specific help
|
46 |
+
|
47 |
+
'
|
48 |
+
template: '${hydra.help.header}
|
49 |
+
|
50 |
+
== Configuration groups ==
|
51 |
+
|
52 |
+
Compose your configuration from those groups (group=option)
|
53 |
+
|
54 |
+
|
55 |
+
$APP_CONFIG_GROUPS
|
56 |
+
|
57 |
+
|
58 |
+
== Config ==
|
59 |
+
|
60 |
+
Override anything in the config (foo.bar=value)
|
61 |
+
|
62 |
+
|
63 |
+
$CONFIG
|
64 |
+
|
65 |
+
|
66 |
+
${hydra.help.footer}
|
67 |
+
|
68 |
+
'
|
69 |
+
hydra_help:
|
70 |
+
template: 'Hydra (${hydra.runtime.version})
|
71 |
+
|
72 |
+
See https://hydra.cc for more info.
|
73 |
+
|
74 |
+
|
75 |
+
== Flags ==
|
76 |
+
|
77 |
+
$FLAGS_HELP
|
78 |
+
|
79 |
+
|
80 |
+
== Configuration groups ==
|
81 |
+
|
82 |
+
Compose your configuration from those groups (For example, append hydra/job_logging=disabled
|
83 |
+
to command line)
|
84 |
+
|
85 |
+
|
86 |
+
$HYDRA_CONFIG_GROUPS
|
87 |
+
|
88 |
+
|
89 |
+
Use ''--cfg hydra'' to Show the Hydra config.
|
90 |
+
|
91 |
+
'
|
92 |
+
hydra_help: ???
|
93 |
+
hydra_logging:
|
94 |
+
version: 1
|
95 |
+
formatters:
|
96 |
+
simple:
|
97 |
+
format: '[%(asctime)s][HYDRA] %(message)s'
|
98 |
+
handlers:
|
99 |
+
console:
|
100 |
+
class: logging.StreamHandler
|
101 |
+
formatter: simple
|
102 |
+
stream: ext://sys.stdout
|
103 |
+
root:
|
104 |
+
level: INFO
|
105 |
+
handlers:
|
106 |
+
- console
|
107 |
+
loggers:
|
108 |
+
logging_example:
|
109 |
+
level: DEBUG
|
110 |
+
disable_existing_loggers: false
|
111 |
+
job_logging:
|
112 |
+
version: 1
|
113 |
+
formatters:
|
114 |
+
simple:
|
115 |
+
format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
|
116 |
+
handlers:
|
117 |
+
console:
|
118 |
+
class: logging.StreamHandler
|
119 |
+
formatter: simple
|
120 |
+
stream: ext://sys.stdout
|
121 |
+
file:
|
122 |
+
class: logging.FileHandler
|
123 |
+
formatter: simple
|
124 |
+
filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
|
125 |
+
root:
|
126 |
+
level: INFO
|
127 |
+
handlers:
|
128 |
+
- console
|
129 |
+
- file
|
130 |
+
disable_existing_loggers: false
|
131 |
+
env: {}
|
132 |
+
mode: MULTIRUN
|
133 |
+
searchpath: []
|
134 |
+
callbacks: {}
|
135 |
+
output_subdir: .hydra
|
136 |
+
overrides:
|
137 |
+
hydra:
|
138 |
+
- hydra.mode=MULTIRUN
|
139 |
+
task:
|
140 |
+
- model.dataset_name=redwoodresearch/diamonds-seed3
|
141 |
+
job:
|
142 |
+
name: train
|
143 |
+
chdir: null
|
144 |
+
override_dirname: model.dataset_name=redwoodresearch/diamonds-seed3
|
145 |
+
id: '747440'
|
146 |
+
num: 0
|
147 |
+
config_name: codegen_diamonds_slurm
|
148 |
+
env_set: {}
|
149 |
+
env_copy: []
|
150 |
+
config:
|
151 |
+
override_dirname:
|
152 |
+
kv_sep: '='
|
153 |
+
item_sep: ','
|
154 |
+
exclude_keys: []
|
155 |
+
runtime:
|
156 |
+
version: 1.3.2
|
157 |
+
version_base: '1.1'
|
158 |
+
cwd: /nas/ucb/oliveradk/measurement-pred
|
159 |
+
config_sources:
|
160 |
+
- path: hydra.conf
|
161 |
+
schema: pkg
|
162 |
+
provider: hydra
|
163 |
+
- path: /nas/ucb/oliveradk/measurement-pred/conf
|
164 |
+
schema: file
|
165 |
+
provider: main
|
166 |
+
- path: ''
|
167 |
+
schema: structured
|
168 |
+
provider: schema
|
169 |
+
output_dir: /nas/ucb/oliveradk/measurement-pred/multirun/2024-12-17/07-26-23/0
|
170 |
+
choices:
|
171 |
+
hparams: hparams
|
172 |
+
model: codegen_diamonds
|
173 |
+
hydra/env: default
|
174 |
+
hydra/callbacks: null
|
175 |
+
hydra/job_logging: default
|
176 |
+
hydra/hydra_logging: default
|
177 |
+
hydra/hydra_help: default
|
178 |
+
hydra/help: default
|
179 |
+
hydra/sweeper: basic
|
180 |
+
hydra/launcher: slurm_chai
|
181 |
+
hydra/output: default
|
182 |
+
verbose: false
|
.hydra/overrides.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
- model.dataset_name=redwoodresearch/diamonds-seed3
|
README.md
CHANGED
@@ -1,199 +1,76 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
base_model: Salesforce/codegen-350M-mono
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: codegen-350M-mono-measurement_pred-diamonds-seed3
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# codegen-350M-mono-measurement_pred-diamonds-seed3
|
17 |
|
18 |
+
This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4321
|
21 |
+
- Accuracy: 0.9160
|
22 |
+
- Accuracy Sensor 0: 0.9279
|
23 |
+
- Auroc Sensor 0: 0.9601
|
24 |
+
- Accuracy Sensor 1: 0.9017
|
25 |
+
- Auroc Sensor 1: 0.9575
|
26 |
+
- Accuracy Sensor 2: 0.9458
|
27 |
+
- Auroc Sensor 2: 0.9593
|
28 |
+
- Accuracy Aggregated: 0.8887
|
29 |
+
- Auroc Aggregated: 0.9488
|
30 |
|
31 |
+
## Model description
|
32 |
|
33 |
+
More information needed
|
34 |
|
35 |
+
## Intended uses & limitations
|
36 |
|
37 |
+
More information needed
|
38 |
|
39 |
+
## Training and evaluation data
|
40 |
|
41 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
## Training procedure
|
44 |
|
45 |
+
### Training hyperparameters
|
46 |
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 8
|
53 |
+
- total_train_batch_size: 32
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 64
|
57 |
+
- num_epochs: 5
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
|
60 |
+
### Training results
|
61 |
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
|
63 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
|
64 |
+
| 0.281 | 0.9997 | 781 | 0.4126 | 0.8254 | 0.8474 | 0.9025 | 0.8423 | 0.9144 | 0.8339 | 0.9166 | 0.7778 | 0.8949 |
|
65 |
+
| 0.1966 | 1.9994 | 1562 | 0.2290 | 0.9123 | 0.9079 | 0.9312 | 0.9138 | 0.9490 | 0.9288 | 0.9424 | 0.8990 | 0.9313 |
|
66 |
+
| 0.1412 | 2.9990 | 2343 | 0.2619 | 0.9043 | 0.9059 | 0.9537 | 0.8838 | 0.9581 | 0.9410 | 0.9551 | 0.8863 | 0.9464 |
|
67 |
+
| 0.0757 | 4.0 | 3125 | 0.2862 | 0.9224 | 0.9307 | 0.9622 | 0.9153 | 0.9626 | 0.9464 | 0.9601 | 0.8971 | 0.9516 |
|
68 |
+
| 0.0356 | 4.9984 | 3905 | 0.4321 | 0.9160 | 0.9279 | 0.9601 | 0.9017 | 0.9575 | 0.9458 | 0.9593 | 0.8887 | 0.9488 |
|
69 |
|
|
|
70 |
|
71 |
+
### Framework versions
|
72 |
|
73 |
+
- Transformers 4.41.0
|
74 |
+
- Pytorch 2.3.0+cu121
|
75 |
+
- Datasets 2.19.1
|
76 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_function": "gelu_new",
|
4 |
"aggregate_weight": 0.3,
|
5 |
"architectures": [
|
@@ -28,6 +28,7 @@
|
|
28 |
"resid_pdrop": 0.0,
|
29 |
"rotary_dim": 32,
|
30 |
"scale_attn_weights": true,
|
|
|
31 |
"sensor_token": " omit",
|
32 |
"sensor_token_id": 42848,
|
33 |
"sensors_weight": 0.7,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Salesforce/codegen-350M-mono",
|
3 |
"activation_function": "gelu_new",
|
4 |
"aggregate_weight": 0.3,
|
5 |
"architectures": [
|
|
|
28 |
"resid_pdrop": 0.0,
|
29 |
"rotary_dim": 32,
|
30 |
"scale_attn_weights": true,
|
31 |
+
"sensor_loc_type": "locs_from_token",
|
32 |
"sensor_token": " omit",
|
33 |
"sensor_token_id": 42848,
|
34 |
"sensors_weight": 0.7,
|
configuration_measurement_pred.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
from abc import abstractmethod
|
2 |
from transformers import PretrainedConfig
|
3 |
-
|
4 |
class MeasurementPredictorConfig(PretrainedConfig):
|
5 |
|
6 |
def __init__(
|
7 |
self,
|
8 |
sensor_token=" omit",
|
9 |
-
|
10 |
n_sensors=3,
|
11 |
use_aggregated=True,
|
12 |
sensors_weight = 0.7,
|
@@ -14,7 +13,7 @@ class MeasurementPredictorConfig(PretrainedConfig):
|
|
14 |
**kwargs
|
15 |
):
|
16 |
self.sensor_token = sensor_token
|
17 |
-
self.
|
18 |
self.n_sensors = n_sensors
|
19 |
self.use_aggregated = use_aggregated
|
20 |
self.sensors_weight = sensors_weight
|
|
|
1 |
from abc import abstractmethod
|
2 |
from transformers import PretrainedConfig
|
|
|
3 |
class MeasurementPredictorConfig(PretrainedConfig):
|
4 |
|
5 |
def __init__(
|
6 |
self,
|
7 |
sensor_token=" omit",
|
8 |
+
sensor_loc_type="locs_from_token",
|
9 |
n_sensors=3,
|
10 |
use_aggregated=True,
|
11 |
sensors_weight = 0.7,
|
|
|
13 |
**kwargs
|
14 |
):
|
15 |
self.sensor_token = sensor_token
|
16 |
+
self.sensor_loc_type = sensor_loc_type
|
17 |
self.n_sensors = n_sensors
|
18 |
self.use_aggregated = use_aggregated
|
19 |
self.sensors_weight = sensors_weight
|
logs/events.out.tfevents.1734449259.gail.ist.berkeley.edu.2164205.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d77003ffa60ba928cad6632eae32f97fee0dc488654d35ccb300310b00264ec
|
3 |
+
size 16069
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1216963976
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abd1a2a3f20d0de4bfb8baf9861a742550fd59259e4e33da910c4bdf2f71cf5c
|
3 |
size 1216963976
|
modeling_measurement_pred.py
CHANGED
@@ -3,14 +3,19 @@ from typing import Optional, Tuple, Union
|
|
3 |
import torch
|
4 |
from torch.nn import BCEWithLogitsLoss
|
5 |
from transformers import PreTrainedModel, PreTrainedTokenizer
|
|
|
6 |
from transformers.modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
|
7 |
|
|
|
|
|
|
|
|
|
8 |
class MeasurementPredictorMixin(PreTrainedModel):
|
9 |
|
10 |
def __init__(self, config):
|
11 |
super().__init__(config)
|
|
|
12 |
self.sensor_token = config.sensor_token
|
13 |
-
self.sensor_token_id = config.sensor_token_id
|
14 |
self.n_sensors = config.n_sensors
|
15 |
self.sensor_probes = torch.nn.ModuleList([
|
16 |
torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
|
@@ -20,15 +25,13 @@ class MeasurementPredictorMixin(PreTrainedModel):
|
|
20 |
self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
|
21 |
self.sensors_weight = config.sensors_weight
|
22 |
self.aggregate_weight = config.aggregate_weight
|
|
|
|
|
23 |
|
24 |
-
def
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def set_sensor_token(self, sensor_token: str, tokenizer: PreTrainedTokenizer):
|
29 |
-
sensor_token_id = tokenizer.tokenize(sensor_token)[0]
|
30 |
-
self.sensor_token = sensor_token
|
31 |
-
self.sensor_token_id = sensor_token_id
|
32 |
|
33 |
def forward(
|
34 |
self,
|
@@ -64,10 +67,9 @@ class MeasurementPredictorMixin(PreTrainedModel):
|
|
64 |
output_hidden_states=output_hidden_states,
|
65 |
return_dict=return_dict,
|
66 |
)
|
67 |
-
|
68 |
-
tensor_token_idxs = flat_tensor_token_idxs.view(-1, self.n_sensors)
|
69 |
sensor_embs = base_model_output.last_hidden_state.gather(
|
70 |
-
1,
|
71 |
)
|
72 |
assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors, self.config.emb_dim), f"{sensor_embs.shape} != {(input_ids.shape[0], self.n_sensors, self.config.emb_dim)}"
|
73 |
sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
|
|
|
3 |
import torch
|
4 |
from torch.nn import BCEWithLogitsLoss
|
5 |
from transformers import PreTrainedModel, PreTrainedTokenizer
|
6 |
+
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
7 |
from transformers.modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
|
8 |
|
9 |
+
|
10 |
+
from .sensor_loc_reg import SENSOR_LOC_REGISTRY
|
11 |
+
from .sensor_loc_finder import SensorLocFinder
|
12 |
+
|
13 |
class MeasurementPredictorMixin(PreTrainedModel):
|
14 |
|
15 |
def __init__(self, config):
|
16 |
super().__init__(config)
|
17 |
+
self.sensor_loc_type = config.sensor_loc_type
|
18 |
self.sensor_token = config.sensor_token
|
|
|
19 |
self.n_sensors = config.n_sensors
|
20 |
self.sensor_probes = torch.nn.ModuleList([
|
21 |
torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
|
|
|
25 |
self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
|
26 |
self.sensors_weight = config.sensors_weight
|
27 |
self.aggregate_weight = config.aggregate_weight
|
28 |
+
|
29 |
+
self.get_sensor_locs: SensorLocFinder = None
|
30 |
|
31 |
+
def init_sensor_loc_finder(self, tokenizer: PreTrainedTokenizerBase):
|
32 |
+
self.get_sensor_locs = SENSOR_LOC_REGISTRY[self.sensor_loc_type](
|
33 |
+
tokenizer, sensor_token=self.sensor_token, n_sensors=self.n_sensors
|
34 |
+
)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def forward(
|
37 |
self,
|
|
|
67 |
output_hidden_states=output_hidden_states,
|
68 |
return_dict=return_dict,
|
69 |
)
|
70 |
+
sensor_locs = self.get_sensor_locs(input_ids)
|
|
|
71 |
sensor_embs = base_model_output.last_hidden_state.gather(
|
72 |
+
1, sensor_locs.unsqueeze(-1).expand(-1, -1, self.config.emb_dim)
|
73 |
)
|
74 |
assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors, self.config.emb_dim), f"{sensor_embs.shape} != {(input_ids.shape[0], self.n_sensors, self.config.emb_dim)}"
|
75 |
sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
|
sensor_loc_finder.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
import torch
|
3 |
+
from transformers import PreTrainedTokenizerBase
|
4 |
+
|
5 |
+
|
6 |
+
class SensorLocFinder(ABC):
|
7 |
+
|
8 |
+
@abstractmethod
|
9 |
+
def __init__(self, tokenizer: PreTrainedTokenizerBase, **kwargs):
|
10 |
+
pass
|
11 |
+
|
12 |
+
@abstractmethod
|
13 |
+
def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
|
14 |
+
pass
|
15 |
+
|
16 |
+
def __call__(self, input_ids: torch.Tensor) -> torch.Tensor:
|
17 |
+
return self.find_sensor_locs(input_ids)
|
sensor_loc_reg.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
from .sensor_loc_stories import StoriesSensorLocFinder
|
4 |
+
from .sensor_locs_from_token import SensorLocFinderFromToken
|
5 |
+
|
6 |
+
|
7 |
+
SENSOR_LOC_REGISTRY = {
|
8 |
+
"stories": StoriesSensorLocFinder,
|
9 |
+
"locs_from_token": SensorLocFinderFromToken
|
10 |
+
}
|
sensor_loc_stories.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PreTrainedTokenizerBase
|
3 |
+
|
4 |
+
from .sensor_loc_finder import SensorLocFinder
|
5 |
+
|
6 |
+
|
7 |
+
class StoriesSensorLocFinder(SensorLocFinder):
|
8 |
+
|
9 |
+
def __init__(self, tokenizer: PreTrainedTokenizerBase, **kwargs):
|
10 |
+
self.questions_section_toks = tokenizer.encode("## Questions")
|
11 |
+
self.question_mark_tok = tokenizer.encode("?")[0]
|
12 |
+
self.other_question_mark_tok = tokenizer.encode(")?")[0]
|
13 |
+
assert len(self.questions_section_toks) == 2
|
14 |
+
|
15 |
+
def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
|
16 |
+
device = input_ids.device
|
17 |
+
question_mark_locs = self._is_sensor_loc(input_ids)
|
18 |
+
total_locs = torch.cumsum(question_mark_locs, dim=-1)
|
19 |
+
total_overall = total_locs[:, -1]
|
20 |
+
assert (
|
21 |
+
total_overall == 3
|
22 |
+
).all(), "can handle different cases, but assuming this is easiest"
|
23 |
+
eqs = total_locs[:, :, None] == torch.arange(1, 4)[None, None].to(device)
|
24 |
+
locs = torch.where(
|
25 |
+
eqs.any(dim=-2),
|
26 |
+
torch.argmax(eqs.to(torch.uint8), dim=-2),
|
27 |
+
input_ids.shape[-1] - 3,
|
28 |
+
).clamp(max=input_ids.shape[-1] - 3)
|
29 |
+
return locs
|
30 |
+
|
31 |
+
|
32 |
+
def _is_sensor_loc(self, input_ids: torch.Tensor):
|
33 |
+
questions_section_toks = self.questions_section_toks
|
34 |
+
question_mark_tok = self.question_mark_tok
|
35 |
+
other_question_mark_tok = self.other_question_mark_tok
|
36 |
+
eq_question_item = (input_ids[:, :-1] == questions_section_toks[0]) & (
|
37 |
+
input_ids[:, 1:] == questions_section_toks[1]
|
38 |
+
)
|
39 |
+
assert (eq_question_item.sum(dim=-1, dtype=torch.int) == 1).all(), "could relax"
|
40 |
+
|
41 |
+
summed = torch.cumsum(
|
42 |
+
torch.cat([eq_question_item, eq_question_item[:, -1:]], dim=-1), dim=-1
|
43 |
+
)
|
44 |
+
return (summed > 0) & (
|
45 |
+
(input_ids == question_mark_tok) | (input_ids == other_question_mark_tok)
|
46 |
+
)
|
sensor_locs_from_token.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PreTrainedTokenizerBase
|
3 |
+
|
4 |
+
from .sensor_loc_finder import SensorLocFinder
|
5 |
+
|
6 |
+
|
7 |
+
class SensorLocFinderFromToken(SensorLocFinder):
|
8 |
+
|
9 |
+
def __init__(self, tokenizer: PreTrainedTokenizerBase, sensor_token: str, n_sensors: int):
|
10 |
+
self.sensor_token_id = tokenizer.encode(sensor_token)[0]
|
11 |
+
self.n_sensors = n_sensors
|
12 |
+
|
13 |
+
def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
|
14 |
+
flat_sensor_token_idxs = (input_ids == self.sensor_token_id).nonzero(as_tuple=True)[1]
|
15 |
+
sensor_token_idxs = flat_sensor_token_idxs.view(-1, self.n_sensors)
|
16 |
+
return sensor_token_idxs
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"50257": {
|
13 |
+
"content": " ",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"50258": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50259": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50260": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50261": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50262": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50263": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50264": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50265": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50266": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50267": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50268": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50269": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50270": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50271": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50272": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50273": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50274": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50275": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50276": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50277": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50278": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50279": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50280": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"50281": {
|
205 |
+
"content": " ",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"50282": {
|
213 |
+
"content": " ",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"50283": {
|
221 |
+
"content": " ",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"50284": {
|
229 |
+
"content": " ",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"50285": {
|
237 |
+
"content": " ",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"50286": {
|
245 |
+
"content": " ",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"50287": {
|
253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
},
|
260 |
+
"50288": {
|
261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": true,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": false
|
267 |
+
},
|
268 |
+
"50289": {
|
269 |
+
"content": "\t\t\t\t\t\t\t",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": true,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": false
|
275 |
+
},
|
276 |
+
"50290": {
|
277 |
+
"content": "\t\t\t\t\t\t",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": false
|
283 |
+
},
|
284 |
+
"50291": {
|
285 |
+
"content": "\t\t\t\t\t",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": true,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": false
|
291 |
+
},
|
292 |
+
"50292": {
|
293 |
+
"content": "\t\t\t\t",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": true,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": false
|
299 |
+
},
|
300 |
+
"50293": {
|
301 |
+
"content": "\t\t\t",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": true,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": false
|
307 |
+
},
|
308 |
+
"50294": {
|
309 |
+
"content": "\t\t",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": true,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": false
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"bos_token": "<|endoftext|>",
|
318 |
+
"clean_up_tokenization_spaces": true,
|
319 |
+
"eos_token": "<|endoftext|>",
|
320 |
+
"model_max_length": 2048,
|
321 |
+
"pad_token": "<|endoftext|>",
|
322 |
+
"padding_side": "left",
|
323 |
+
"return_token_type_ids": false,
|
324 |
+
"tokenizer_class": "CodeGenTokenizer",
|
325 |
+
"truncation_side": "left",
|
326 |
+
"unk_token": "<|endoftext|>"
|
327 |
+
}
|
train.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[2024-12-17 07:27:39,043][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fe436bedca674c81f1894f7a37c5345b9da2d63ade8623a56ca041879d929a1
|
3 |
+
size 5112
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|