File size: 2,014 Bytes
5dc3bfb 6f95b64 5dc3bfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
from transformers import PreTrainedTokenizerBase
from .sensor_loc_finder import SensorLocFinder
class StoriesSensorLocFinder(SensorLocFinder):
def __init__(self, tokenizer: PreTrainedTokenizerBase, **kwargs):
self.questions_section_toks = tokenizer.encode("## Questions")
self.question_mark_tok = tokenizer.encode("?")[0]
self.other_question_mark_tok = tokenizer.encode(")?")[0]
assert len(self.questions_section_toks) == 2
def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
device = input_ids.device
question_mark_locs = self._is_sensor_loc(input_ids)
total_locs = torch.cumsum(question_mark_locs, dim=-1)
total_overall = total_locs[:, -1]
assert (
total_overall == 3
).all(), "can handle different cases, but assuming this is easiest"
eqs = total_locs[:, :, None] == torch.arange(1, 4)[None, None].to(device)
locs = torch.where(
eqs.any(dim=-2),
torch.argmax(eqs.to(torch.uint8), dim=-2),
input_ids.shape[-1] - 3,
).clamp(max=input_ids.shape[-1] - 3)
aggregate_sensor_loc = locs[:, -1].unsqueeze(1)
locs = torch.cat([locs, aggregate_sensor_loc], dim=1)
return locs
def _is_sensor_loc(self, input_ids: torch.Tensor):
questions_section_toks = self.questions_section_toks
question_mark_tok = self.question_mark_tok
other_question_mark_tok = self.other_question_mark_tok
eq_question_item = (input_ids[:, :-1] == questions_section_toks[0]) & (
input_ids[:, 1:] == questions_section_toks[1]
)
assert (eq_question_item.sum(dim=-1, dtype=torch.int) == 1).all(), "could relax"
summed = torch.cumsum(
torch.cat([eq_question_item, eq_question_item[:, -1:]], dim=-1), dim=-1
)
return (summed > 0) & (
(input_ids == question_mark_tok) | (input_ids == other_question_mark_tok)
)
|