--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed4 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed4 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3745 - Accuracy: 0.9126 - Accuracy Sensor 0: 0.9165 - Auroc Sensor 0: 0.9601 - Accuracy Sensor 1: 0.9099 - Auroc Sensor 1: 0.9647 - Accuracy Sensor 2: 0.9342 - Auroc Sensor 2: 0.9771 - Accuracy Aggregated: 0.8898 - Auroc Aggregated: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2756 | 0.9997 | 781 | 0.3221 | 0.8643 | 0.8659 | 0.9177 | 0.8499 | 0.9112 | 0.9025 | 0.9476 | 0.8388 | 0.9090 | | 0.1793 | 1.9994 | 1562 | 0.2547 | 0.8960 | 0.9032 | 0.9461 | 0.8847 | 0.9450 | 0.9345 | 0.9710 | 0.8617 | 0.9433 | | 0.1281 | 2.9990 | 2343 | 0.2960 | 0.8797 | 0.8882 | 0.9563 | 0.8726 | 0.9584 | 0.9133 | 0.9719 | 0.8447 | 0.9553 | | 0.0685 | 4.0 | 3125 | 0.3088 | 0.9049 | 0.9163 | 0.9597 | 0.9014 | 0.9638 | 0.9259 | 0.9765 | 0.8761 | 0.9609 | | 0.0342 | 4.9984 | 3905 | 0.3745 | 0.9126 | 0.9165 | 0.9601 | 0.9099 | 0.9647 | 0.9342 | 0.9771 | 0.8898 | 0.9613 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1