--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed4 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed4 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3733 - Accuracy: 0.9086 - Accuracy Sensor 0: 0.9144 - Auroc Sensor 0: 0.9506 - Accuracy Sensor 1: 0.9050 - Auroc Sensor 1: 0.9584 - Accuracy Sensor 2: 0.9332 - Auroc Sensor 2: 0.9753 - Accuracy Aggregated: 0.8820 - Auroc Aggregated: 0.9557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.3029 | 0.9997 | 781 | 0.3411 | 0.8441 | 0.8553 | 0.9103 | 0.8390 | 0.9066 | 0.8633 | 0.9334 | 0.8188 | 0.8975 | | 0.2003 | 1.9994 | 1562 | 0.2859 | 0.8852 | 0.8929 | 0.9380 | 0.8778 | 0.9380 | 0.9319 | 0.9638 | 0.8384 | 0.9361 | | 0.1366 | 2.9990 | 2343 | 0.2701 | 0.8945 | 0.9041 | 0.9549 | 0.8902 | 0.9570 | 0.9245 | 0.9755 | 0.8591 | 0.9539 | | 0.0812 | 4.0 | 3125 | 0.2992 | 0.9046 | 0.9166 | 0.9542 | 0.8947 | 0.9585 | 0.9339 | 0.9765 | 0.8730 | 0.9567 | | 0.0381 | 4.9984 | 3905 | 0.3733 | 0.9086 | 0.9144 | 0.9506 | 0.9050 | 0.9584 | 0.9332 | 0.9753 | 0.8820 | 0.9557 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1