oliverdk commited on
Commit
9c1e821
1 Parent(s): 5e08178

End of training

Browse files
.hydra/config.yaml CHANGED
@@ -3,6 +3,9 @@ model:
3
  model_type: codegen
4
  pretrained_model_name: Salesforce/codegen-350M-mono
5
  max_length: 1024
 
 
 
6
  hparams:
7
  learning_rate: 2.0e-05
8
  weight_decay: 0.02
 
3
  model_type: codegen
4
  pretrained_model_name: Salesforce/codegen-350M-mono
5
  max_length: 1024
6
+ model_config_params:
7
+ sensor_loc_type: locs_from_token
8
+ sensor_token: ' omit'
9
  hparams:
10
  learning_rate: 2.0e-05
11
  weight_decay: 0.02
.hydra/hydra.yaml CHANGED
@@ -142,8 +142,8 @@ hydra:
142
  name: train
143
  chdir: null
144
  override_dirname: model.dataset_name=redwoodresearch/diamonds-seed6
145
- id: '747442'
146
- num: 0
147
  config_name: codegen_diamonds_slurm
148
  env_set: {}
149
  env_copy: []
@@ -166,7 +166,7 @@ hydra:
166
  - path: ''
167
  schema: structured
168
  provider: schema
169
- output_dir: /nas/ucb/oliveradk/measurement-pred/multirun/2024-12-17/07-26-25/0
170
  choices:
171
  hparams: hparams
172
  model: codegen_diamonds
 
142
  name: train
143
  chdir: null
144
  override_dirname: model.dataset_name=redwoodresearch/diamonds-seed6
145
+ id: '748836_5'
146
+ num: 5
147
  config_name: codegen_diamonds_slurm
148
  env_set: {}
149
  env_copy: []
 
166
  - path: ''
167
  schema: structured
168
  provider: schema
169
+ output_dir: /nas/ucb/oliveradk/measurement-pred/multirun/2024-12-19/09-54-27/5
170
  choices:
171
  hparams: hparams
172
  model: codegen_diamonds
README.md CHANGED
@@ -17,16 +17,16 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.3448
21
- - Accuracy: 0.9221
22
- - Accuracy Sensor 0: 0.9220
23
- - Auroc Sensor 0: 0.9685
24
- - Accuracy Sensor 1: 0.9246
25
- - Auroc Sensor 1: 0.9499
26
- - Accuracy Sensor 2: 0.9424
27
- - Auroc Sensor 2: 0.9773
28
- - Accuracy Aggregated: 0.8995
29
- - Auroc Aggregated: 0.9623
30
 
31
  ## Model description
32
 
@@ -61,11 +61,11 @@ The following hyperparameters were used during training:
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
63
  |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
64
- | 0.2903 | 0.9997 | 781 | 0.2948 | 0.8787 | 0.8929 | 0.9140 | 0.8837 | 0.9156 | 0.8940 | 0.9364 | 0.8443 | 0.9039 |
65
- | 0.1957 | 1.9994 | 1562 | 0.2496 | 0.8951 | 0.9185 | 0.9448 | 0.8936 | 0.9374 | 0.9065 | 0.9627 | 0.8617 | 0.9375 |
66
- | 0.1345 | 2.9990 | 2343 | 0.2076 | 0.9244 | 0.9279 | 0.9643 | 0.9283 | 0.9521 | 0.9358 | 0.9756 | 0.9056 | 0.9583 |
67
- | 0.0781 | 4.0 | 3125 | 0.2624 | 0.9256 | 0.9263 | 0.9678 | 0.9256 | 0.9521 | 0.9388 | 0.9775 | 0.9116 | 0.9611 |
68
- | 0.0384 | 4.9984 | 3905 | 0.3448 | 0.9221 | 0.9220 | 0.9685 | 0.9246 | 0.9499 | 0.9424 | 0.9773 | 0.8995 | 0.9623 |
69
 
70
 
71
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.2981
21
+ - Accuracy: 0.9264
22
+ - Accuracy Sensor 0: 0.9256
23
+ - Auroc Sensor 0: 0.9730
24
+ - Accuracy Sensor 1: 0.9264
25
+ - Auroc Sensor 1: 0.9550
26
+ - Accuracy Sensor 2: 0.9466
27
+ - Auroc Sensor 2: 0.9816
28
+ - Accuracy Aggregated: 0.9069
29
+ - Auroc Aggregated: 0.9695
30
 
31
  ## Model description
32
 
 
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
63
  |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
64
+ | 0.2741 | 0.9997 | 781 | 0.2721 | 0.8923 | 0.9024 | 0.9236 | 0.8941 | 0.9249 | 0.9104 | 0.9478 | 0.8624 | 0.9125 |
65
+ | 0.1844 | 1.9994 | 1562 | 0.2277 | 0.9106 | 0.9179 | 0.9518 | 0.9016 | 0.9472 | 0.9261 | 0.9696 | 0.8967 | 0.9453 |
66
+ | 0.1191 | 2.9990 | 2343 | 0.2076 | 0.9246 | 0.9277 | 0.9671 | 0.9287 | 0.9586 | 0.9424 | 0.9783 | 0.8996 | 0.9638 |
67
+ | 0.0703 | 4.0 | 3125 | 0.2424 | 0.9277 | 0.9280 | 0.9723 | 0.9253 | 0.9534 | 0.9423 | 0.9815 | 0.9154 | 0.9686 |
68
+ | 0.0353 | 4.9984 | 3905 | 0.2981 | 0.9264 | 0.9256 | 0.9730 | 0.9264 | 0.9550 | 0.9466 | 0.9816 | 0.9069 | 0.9695 |
69
 
70
 
71
  ### Framework versions
config.json CHANGED
@@ -48,7 +48,6 @@
48
  "tokenizer_class": "GPT2Tokenizer",
49
  "torch_dtype": "float32",
50
  "transformers_version": "4.41.0",
51
- "use_aggregated": true,
52
  "use_cache": false,
53
  "vocab_size": 51200
54
  }
 
48
  "tokenizer_class": "GPT2Tokenizer",
49
  "torch_dtype": "float32",
50
  "transformers_version": "4.41.0",
 
51
  "use_cache": false,
52
  "vocab_size": 51200
53
  }
configuration_measurement_pred.py CHANGED
@@ -7,7 +7,6 @@ class MeasurementPredictorConfig(PretrainedConfig):
7
  sensor_token=" omit",
8
  sensor_loc_type="locs_from_token",
9
  n_sensors=3,
10
- use_aggregated=True,
11
  sensors_weight = 0.7,
12
  aggregate_weight=0.3,
13
  **kwargs
@@ -15,7 +14,6 @@ class MeasurementPredictorConfig(PretrainedConfig):
15
  self.sensor_token = sensor_token
16
  self.sensor_loc_type = sensor_loc_type
17
  self.n_sensors = n_sensors
18
- self.use_aggregated = use_aggregated
19
  self.sensors_weight = sensors_weight
20
  self.aggregate_weight = aggregate_weight
21
  super().__init__(**kwargs)
 
7
  sensor_token=" omit",
8
  sensor_loc_type="locs_from_token",
9
  n_sensors=3,
 
10
  sensors_weight = 0.7,
11
  aggregate_weight=0.3,
12
  **kwargs
 
14
  self.sensor_token = sensor_token
15
  self.sensor_loc_type = sensor_loc_type
16
  self.n_sensors = n_sensors
 
17
  self.sensors_weight = sensors_weight
18
  self.aggregate_weight = aggregate_weight
19
  super().__init__(**kwargs)
logs/events.out.tfevents.1734630919.gan.ist.berkeley.edu.947856.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25db1073949831174f6df0e27d5beda9e63d0e4da5cfa4af0729c3e7d3e73705
3
+ size 16043
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:332fdb5e9a14782af5a6277e6145ab89f2a2f20de6876d73f9390b864a89d7fb
3
  size 1216963976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93532cc9979f77891c8495a15933ecaae5a2c13bcf60d2c4c66a9ea8ed9242e6
3
  size 1216963976
modeling_code_gen_measurement_pred.py CHANGED
@@ -1,5 +1,5 @@
1
  from transformers.models.codegen import CodeGenPreTrainedModel, CodeGenModel
2
-
3
  from .modeling_measurement_pred import MeasurementPredictorMixin
4
  from .configuration_code_gen_measuremet_pred import CodeGenMeasurementPredictorConfig
5
 
@@ -11,3 +11,9 @@ class CodeGenMeasurementPredictor(CodeGenPreTrainedModel, MeasurementPredictorMi
11
  super().__init__(config)
12
  self.transformer = CodeGenModel(config)
13
  self.post_init()
 
 
 
 
 
 
 
1
  from transformers.models.codegen import CodeGenPreTrainedModel, CodeGenModel
2
+ from transformers import PreTrainedTokenizerBase
3
  from .modeling_measurement_pred import MeasurementPredictorMixin
4
  from .configuration_code_gen_measuremet_pred import CodeGenMeasurementPredictorConfig
5
 
 
11
  super().__init__(config)
12
  self.transformer = CodeGenModel(config)
13
  self.post_init()
14
+
15
+ def set_pad_token(self, tokenizer: PreTrainedTokenizerBase):
16
+ pad_token = ' .'
17
+ pad_token_id = tokenizer.encode(pad_token)[0]
18
+ tokenizer.pad_token = pad_token
19
+ tokenizer.pad_token_id = pad_token_id
modeling_measurement_pred.py CHANGED
@@ -1,4 +1,5 @@
1
  from typing import Optional, Tuple, Union
 
2
 
3
  import torch
4
  from torch.nn import BCEWithLogitsLoss
@@ -20,16 +21,18 @@ class MeasurementPredictorMixin(PreTrainedModel):
20
  self.sensor_probes = torch.nn.ModuleList([
21
  torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
22
  ])
23
- self.use_aggregated = config.use_aggregated
24
- if config.use_aggregated:
25
- self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
26
  self.sensors_weight = config.sensors_weight
27
  self.aggregate_weight = config.aggregate_weight
28
 
29
- self.get_sensor_locs: SensorLocFinder = None
 
 
 
 
30
 
31
  def init_sensor_loc_finder(self, tokenizer: PreTrainedTokenizerBase):
32
- self.get_sensor_locs = SENSOR_LOC_REGISTRY[self.sensor_loc_type](
33
  tokenizer, sensor_token=self.sensor_token, n_sensors=self.n_sensors
34
  )
35
 
@@ -67,28 +70,27 @@ class MeasurementPredictorMixin(PreTrainedModel):
67
  output_hidden_states=output_hidden_states,
68
  return_dict=return_dict,
69
  )
70
- sensor_locs = self.get_sensor_locs(input_ids)
 
71
  sensor_embs = base_model_output.last_hidden_state.gather(
72
  1, sensor_locs.unsqueeze(-1).expand(-1, -1, self.config.emb_dim)
73
  )
74
- assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors, self.config.emb_dim), f"{sensor_embs.shape} != {(input_ids.shape[0], self.n_sensors, self.config.emb_dim)}"
 
 
75
  sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
76
  for i in range(self.n_sensors)], dim=-1)
77
- logits = sensor_logits
 
78
 
79
- if self.use_aggregated:
80
- last_emb = base_model_output.last_hidden_state[:, -1, :]
81
- aggregate_logits = self.aggregate_probe(last_emb)
82
- logits = torch.concat([logits, aggregate_logits], dim=-1)
83
-
84
  loss = None
85
  if labels is not None:
86
  loss_fct = BCEWithLogitsLoss()
87
- sensor_loss = loss_fct(sensor_logits, labels[:, :self.n_sensors]) * self.sensors_weight
88
  loss = sensor_loss
89
- if self.use_aggregated: #TOOD: should be use aggregate
90
- aggregate_loss = loss_fct(aggregate_logits, labels[:, -1:]) * self.aggregate_weight
91
- loss += aggregate_loss
92
 
93
  if not return_dict:
94
  output = (logits, ) + base_model_output[1:]
 
1
  from typing import Optional, Tuple, Union
2
+ from abc import abstractmethod
3
 
4
  import torch
5
  from torch.nn import BCEWithLogitsLoss
 
21
  self.sensor_probes = torch.nn.ModuleList([
22
  torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
23
  ])
24
+ self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
 
 
25
  self.sensors_weight = config.sensors_weight
26
  self.aggregate_weight = config.aggregate_weight
27
 
28
+ self.find_sensor_locs: SensorLocFinder = None
29
+
30
+ @abstractmethod
31
+ def set_pad_token(self, tokenizer: PreTrainedTokenizerBase):
32
+ pass
33
 
34
  def init_sensor_loc_finder(self, tokenizer: PreTrainedTokenizerBase):
35
+ self.find_sensor_locs = SENSOR_LOC_REGISTRY[self.sensor_loc_type](
36
  tokenizer, sensor_token=self.sensor_token, n_sensors=self.n_sensors
37
  )
38
 
 
70
  output_hidden_states=output_hidden_states,
71
  return_dict=return_dict,
72
  )
73
+ # get sensor embeddings (including aggregate)
74
+ sensor_locs = self.find_sensor_locs(input_ids)
75
  sensor_embs = base_model_output.last_hidden_state.gather(
76
  1, sensor_locs.unsqueeze(-1).expand(-1, -1, self.config.emb_dim)
77
  )
78
+ assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors + 1, self.config.emb_dim), sensor_embs.shape
79
+
80
+ # get sensor and aggregate logits
81
  sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
82
  for i in range(self.n_sensors)], dim=-1)
83
+ aggregate_logits = self.aggregate_probe(sensor_embs[:, -1, :])
84
+ logits = torch.concat([sensor_logits, aggregate_logits], dim=-1)
85
 
86
+ # compute loss
 
 
 
 
87
  loss = None
88
  if labels is not None:
89
  loss_fct = BCEWithLogitsLoss()
90
+ sensor_loss = loss_fct(sensor_logits[:, :self.n_sensors], labels[:, :self.n_sensors]) * self.sensors_weight
91
  loss = sensor_loss
92
+ aggregate_loss = loss_fct(aggregate_logits, labels[:, -1:]) * self.aggregate_weight
93
+ loss += aggregate_loss
 
94
 
95
  if not return_dict:
96
  output = (logits, ) + base_model_output[1:]
sensor_loc_stories.py CHANGED
@@ -26,6 +26,8 @@ class StoriesSensorLocFinder(SensorLocFinder):
26
  torch.argmax(eqs.to(torch.uint8), dim=-2),
27
  input_ids.shape[-1] - 3,
28
  ).clamp(max=input_ids.shape[-1] - 3)
 
 
29
  return locs
30
 
31
 
 
26
  torch.argmax(eqs.to(torch.uint8), dim=-2),
27
  input_ids.shape[-1] - 3,
28
  ).clamp(max=input_ids.shape[-1] - 3)
29
+ aggregate_sensor_loc = locs[:, -1].unsqueeze(1)
30
+ locs = torch.cat([locs, aggregate_sensor_loc], dim=1)
31
  return locs
32
 
33
 
sensor_locs_from_token.py CHANGED
@@ -13,4 +13,6 @@ class SensorLocFinderFromToken(SensorLocFinder):
13
  def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
14
  flat_sensor_token_idxs = (input_ids == self.sensor_token_id).nonzero(as_tuple=True)[1]
15
  sensor_token_idxs = flat_sensor_token_idxs.view(-1, self.n_sensors)
 
 
16
  return sensor_token_idxs
 
13
  def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
14
  flat_sensor_token_idxs = (input_ids == self.sensor_token_id).nonzero(as_tuple=True)[1]
15
  sensor_token_idxs = flat_sensor_token_idxs.view(-1, self.n_sensors)
16
+ aggregate_sensor_token_idx = sensor_token_idxs[:, -1].unsqueeze(1)
17
+ sensor_token_idxs = torch.cat([sensor_token_idxs, aggregate_sensor_token_idx], dim=1)
18
  return sensor_token_idxs
special_tokens_map.json CHANGED
@@ -13,7 +13,7 @@
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
- "pad_token": "<|endoftext|>",
17
  "unk_token": {
18
  "content": "<|endoftext|>",
19
  "lstrip": false,
 
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
+ "pad_token": "Ġ.",
17
  "unk_token": {
18
  "content": "<|endoftext|>",
19
  "lstrip": false,
tokenizer.json CHANGED
@@ -12,9 +12,9 @@
12
  },
13
  "direction": "Left",
14
  "pad_to_multiple_of": null,
15
- "pad_id": 50256,
16
  "pad_type_id": 0,
17
- "pad_token": "<|endoftext|>"
18
  },
19
  "added_tokens": [
20
  {
 
12
  },
13
  "direction": "Left",
14
  "pad_to_multiple_of": null,
15
+ "pad_id": 764,
16
  "pad_type_id": 0,
17
+ "pad_token": "Ġ."
18
  },
19
  "added_tokens": [
20
  {
tokenizer_config.json CHANGED
@@ -318,7 +318,7 @@
318
  "clean_up_tokenization_spaces": true,
319
  "eos_token": "<|endoftext|>",
320
  "model_max_length": 2048,
321
- "pad_token": "<|endoftext|>",
322
  "padding_side": "left",
323
  "return_token_type_ids": false,
324
  "tokenizer_class": "CodeGenTokenizer",
 
318
  "clean_up_tokenization_spaces": true,
319
  "eos_token": "<|endoftext|>",
320
  "model_max_length": 2048,
321
+ "pad_token": "Ġ.",
322
  "padding_side": "left",
323
  "return_token_type_ids": false,
324
  "tokenizer_class": "CodeGenTokenizer",
train.log CHANGED
@@ -1 +1 @@
1
- [2024-12-17 07:27:38,579][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
 
1
+ [2024-12-19 09:55:18,618][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.