--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed6 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed6 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Accuracy: 0.9221 - Accuracy Sensor 0: 0.9220 - Auroc Sensor 0: 0.9685 - Accuracy Sensor 1: 0.9246 - Auroc Sensor 1: 0.9499 - Accuracy Sensor 2: 0.9424 - Auroc Sensor 2: 0.9773 - Accuracy Aggregated: 0.8995 - Auroc Aggregated: 0.9623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2903 | 0.9997 | 781 | 0.2948 | 0.8787 | 0.8929 | 0.9140 | 0.8837 | 0.9156 | 0.8940 | 0.9364 | 0.8443 | 0.9039 | | 0.1957 | 1.9994 | 1562 | 0.2496 | 0.8951 | 0.9185 | 0.9448 | 0.8936 | 0.9374 | 0.9065 | 0.9627 | 0.8617 | 0.9375 | | 0.1345 | 2.9990 | 2343 | 0.2076 | 0.9244 | 0.9279 | 0.9643 | 0.9283 | 0.9521 | 0.9358 | 0.9756 | 0.9056 | 0.9583 | | 0.0781 | 4.0 | 3125 | 0.2624 | 0.9256 | 0.9263 | 0.9678 | 0.9256 | 0.9521 | 0.9388 | 0.9775 | 0.9116 | 0.9611 | | 0.0384 | 4.9984 | 3905 | 0.3448 | 0.9221 | 0.9220 | 0.9685 | 0.9246 | 0.9499 | 0.9424 | 0.9773 | 0.8995 | 0.9623 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1