--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed6 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed6 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2981 - Accuracy: 0.9264 - Accuracy Sensor 0: 0.9256 - Auroc Sensor 0: 0.9730 - Accuracy Sensor 1: 0.9264 - Auroc Sensor 1: 0.9550 - Accuracy Sensor 2: 0.9466 - Auroc Sensor 2: 0.9816 - Accuracy Aggregated: 0.9069 - Auroc Aggregated: 0.9695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.2741 | 0.9997 | 781 | 0.2721 | 0.8923 | 0.9024 | 0.9236 | 0.8941 | 0.9249 | 0.9104 | 0.9478 | 0.8624 | 0.9125 | | 0.1844 | 1.9994 | 1562 | 0.2277 | 0.9106 | 0.9179 | 0.9518 | 0.9016 | 0.9472 | 0.9261 | 0.9696 | 0.8967 | 0.9453 | | 0.1191 | 2.9990 | 2343 | 0.2076 | 0.9246 | 0.9277 | 0.9671 | 0.9287 | 0.9586 | 0.9424 | 0.9783 | 0.8996 | 0.9638 | | 0.0703 | 4.0 | 3125 | 0.2424 | 0.9277 | 0.9280 | 0.9723 | 0.9253 | 0.9534 | 0.9423 | 0.9815 | 0.9154 | 0.9686 | | 0.0353 | 4.9984 | 3905 | 0.2981 | 0.9264 | 0.9256 | 0.9730 | 0.9264 | 0.9550 | 0.9466 | 0.9816 | 0.9069 | 0.9695 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1