--- license: bsd-3-clause base_model: Salesforce/codegen-350M-mono tags: - generated_from_trainer metrics: - accuracy model-index: - name: codegen-350M-mono-measurement_pred-diamonds-seed7 results: [] --- # codegen-350M-mono-measurement_pred-diamonds-seed7 This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5040 - Accuracy: 0.9090 - Accuracy Sensor 0: 0.9133 - Auroc Sensor 0: 0.9558 - Accuracy Sensor 1: 0.9094 - Auroc Sensor 1: 0.9574 - Accuracy Sensor 2: 0.9209 - Auroc Sensor 2: 0.9484 - Accuracy Aggregated: 0.8924 - Auroc Aggregated: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 64 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| | 0.292 | 0.9997 | 781 | 0.4645 | 0.7965 | 0.7764 | 0.9029 | 0.7966 | 0.9121 | 0.8383 | 0.9100 | 0.7747 | 0.8919 | | 0.1979 | 1.9994 | 1562 | 0.3658 | 0.8561 | 0.8608 | 0.9319 | 0.8325 | 0.9368 | 0.8895 | 0.9374 | 0.8415 | 0.9235 | | 0.1187 | 2.9990 | 2343 | 0.3611 | 0.8739 | 0.8911 | 0.9495 | 0.8882 | 0.9516 | 0.8664 | 0.9434 | 0.8497 | 0.9367 | | 0.0666 | 4.0 | 3125 | 0.3757 | 0.9075 | 0.9064 | 0.9566 | 0.9149 | 0.9599 | 0.9146 | 0.9481 | 0.8942 | 0.9454 | | 0.0267 | 4.9984 | 3905 | 0.5040 | 0.9090 | 0.9133 | 0.9558 | 0.9094 | 0.9574 | 0.9209 | 0.9484 | 0.8924 | 0.9451 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1