File size: 5,833 Bytes
652536b
 
 
 
 
 
 
3684bd2
652536b
 
 
3684bd2
652536b
 
 
 
 
 
 
 
 
 
3684bd2
 
652536b
 
 
ef3fc81
8745d34
3684bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3fc81
 
 
 
 
 
 
 
 
 
 
 
 
3684bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
language:
- en
- de
- fr
- it
- nl

tags:
- punctuation prediction
- punctuation

datasets: wmt/europarl
license: mit
widget:
- text: "Ho sentito che ti sei laureata il che mi fa molto piacere"
  example_title: "Italian"
- text: "Tous les matins vers quatre heures mon père ouvrait la porte de ma chambre"
  example_title: "French"
- text: "Ist das eine Frage Frau Müller"
  example_title: "German"
- text: "My name is Clara and I live in Berkeley California"
  example_title: "English" 

metrics:
- f1
---


# Model Card for fullstop-punctuation-multilingual-base 
 
# Model Details
 
## Model Description
 
The goal of this task consists in training NLP models that can predict the end of sentence (EOS) and punctuation marks on automatically generated or transcribed texts.
 
- **Developed by:** Oliver Guhr
- **Shared by [Optional]:** Oliver Guhr
- **Model type:** Token Classification 
- **Language(s) (NLP):** English, German, French, Italian, Dutch
- **License:** MIT 
- **Parent Model:** xlm-roberta-base
- **Resources for more information:**
    - [GitHub Repo](https://github.com/oliverguhr/fullstop-deep-punctuation-prediction)
   - [Associated Paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf)
 	


# Uses
 

## Direct Use
This model can be used for the task of Token Classification 
 
## Downstream Use [Optional]
 
More information needed.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.



## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

# Training Details
 
## Training Data

The model authors note in the [associated paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf):
> The task consists in predicting EOS and punctua- tion marks on unpunctuated lowercased text. The organizers of the SeppNLG shared task provided 470 MB of English, German, French, and Italian text. This data set consists of a training and a de- velopment set.
 
 
## Training Procedure

 
### Preprocessing
 
More information needed 
 
 


 
### Speeds, Sizes, Times
More information needed 

 
# Evaluation
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
 
More information needed 
 
 
### Factors
More information needed
 
### Metrics
 
More information needed
 
 
## Results 
 
### Classification report over all languages 
```
             precision    recall  f1-score   support

           0       0.99      0.99      0.99  47903344
           .       0.94      0.95      0.95   2798780
           ,       0.85      0.84      0.85   3451618
           ?       0.88      0.85      0.87     88876
           -       0.61      0.32      0.42    157863
           :       0.72      0.52      0.60    103789

    accuracy                           0.98  54504270
   macro avg       0.83      0.75      0.78  54504270
weighted avg       0.98      0.98      0.98  54504270
```


 
# Model Examination
 
More information needed
 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective

More information needed 
 
## Compute Infrastructure
 
More information needed 
 
### Hardware
 
 
More information needed
 
### Software
 
More information needed.
 
# Citation

 
**BibTeX:**
 
 
```bibtex
@article{guhr-EtAl:2021:fullstop,
  title={FullStop: Multilingual Deep Models for Punctuation Prediction},
  author    = {Guhr, Oliver  and  Schumann, Anne-Kathrin  and  Bahrmann, Frank  and  Böhme, Hans Joachim},
  booktitle      = {Proceedings of the Swiss Text Analytics Conference 2021},
  month          = {June},
  year           = {2021},
  address        = {Winterthur, Switzerland},
  publisher      = {CEUR Workshop Proceedings},  
  url       = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
}
```
 
 
 
 
# Glossary [optional]
More information needed 
 
# More Information [optional]
More information needed 

 
# Model Card Authors [optional]
 
 Oliver Guhr in collaboration with Ezi Ozoani and the Hugging Face team


# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
 from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")

model = AutoModelForTokenClassification.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
 ```
</details>