lbourdois commited on
Commit
9c32e26
1 Parent(s): 31085da

Add multilingual to the language tag

Browse files

Hi! A PR to add multilingual to the language tag to improve the referencing.

Files changed (1) hide show
  1. README.md +19 -17
README.md CHANGED
@@ -5,26 +5,28 @@ language:
5
  - fr
6
  - it
7
  - nl
 
 
8
  tags:
9
  - punctuation prediction
10
  - punctuation
11
- datasets:
12
  - wmt/europarl
13
  - SoNaR
14
- license: mit
15
- widget:
16
- - text: "Ho sentito che ti sei laureata il che mi fa molto piacere"
17
- example_title: "Italian"
18
- - text: "Tous les matins vers quatre heures mon père ouvrait la porte de ma chambre"
19
- example_title: "French"
20
- - text: "Ist das eine Frage Frau Müller"
21
- example_title: "German"
22
- - text: "My name is Clara and I live in Berkeley California"
23
- example_title: "English"
24
- - text: "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat"
25
- example_title: "Dutch"
26
  metrics:
27
  - f1
 
 
 
 
 
 
 
 
 
 
 
 
28
  ---
29
 
30
 
@@ -49,13 +51,13 @@ pip install deepmultilingualpunctuation
49
  from deepmultilingualpunctuation import PunctuationModel
50
 
51
  model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base")
52
- text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller"
53
  result = model.restore_punctuation(text)
54
  print(result)
55
  ```
56
 
57
  **output**
58
- > My name is Clara and I live in Berkeley, California. Ist das eine Frage, Frau Müller?
59
 
60
 
61
  ### Predict Labels
@@ -63,7 +65,7 @@ print(result)
63
  from deepmultilingualpunctuation import PunctuationModel
64
 
65
  model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base")
66
- text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller"
67
  clean_text = model.preprocess(text)
68
  labled_words = model.predict(clean_text)
69
  print(labled_words)
@@ -71,7 +73,7 @@ print(labled_words)
71
 
72
  **output**
73
 
74
- > [['My', '0', 0.99998856], ['name', '0', 0.9999708], ['is', '0', 0.99975926], ['Clara', '0', 0.6117834], ['and', '0', 0.9999014], ['I', '0', 0.9999808], ['live', '0', 0.9999666], ['in', '0', 0.99990165], ['Berkeley', ',', 0.9941764], ['California', '.', 0.9952892], ['Ist', '0', 0.9999577], ['das', '0', 0.9999678], ['eine', '0', 0.99998224], ['Frage', ',', 0.9952265], ['Frau', '0', 0.99995995], ['Müller', '?', 0.972517]]
75
 
76
 
77
 
 
5
  - fr
6
  - it
7
  - nl
8
+ - multilingual
9
+ license: mit
10
  tags:
11
  - punctuation prediction
12
  - punctuation
13
+ datasets:
14
  - wmt/europarl
15
  - SoNaR
 
 
 
 
 
 
 
 
 
 
 
 
16
  metrics:
17
  - f1
18
+ widget:
19
+ - text: Ho sentito che ti sei laureata il che mi fa molto piacere
20
+ example_title: Italian
21
+ - text: Tous les matins vers quatre heures mon p�re ouvrait la porte de ma chambre
22
+ example_title: French
23
+ - text: Ist das eine Frage Frau M�ller
24
+ example_title: German
25
+ - text: My name is Clara and I live in Berkeley California
26
+ example_title: English
27
+ - text: hervatting van de zitting ik verklaar de zitting van het europees parlement
28
+ die op vrijdag 17 december werd onderbroken te zijn hervat
29
+ example_title: Dutch
30
  ---
31
 
32
 
 
51
  from deepmultilingualpunctuation import PunctuationModel
52
 
53
  model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base")
54
+ text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau M�ller"
55
  result = model.restore_punctuation(text)
56
  print(result)
57
  ```
58
 
59
  **output**
60
+ > My name is Clara and I live in Berkeley, California. Ist das eine Frage, Frau M�ller?
61
 
62
 
63
  ### Predict Labels
 
65
  from deepmultilingualpunctuation import PunctuationModel
66
 
67
  model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base")
68
+ text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau M�ller"
69
  clean_text = model.preprocess(text)
70
  labled_words = model.predict(clean_text)
71
  print(labled_words)
 
73
 
74
  **output**
75
 
76
+ > [['My', '0', 0.99998856], ['name', '0', 0.9999708], ['is', '0', 0.99975926], ['Clara', '0', 0.6117834], ['and', '0', 0.9999014], ['I', '0', 0.9999808], ['live', '0', 0.9999666], ['in', '0', 0.99990165], ['Berkeley', ',', 0.9941764], ['California', '.', 0.9952892], ['Ist', '0', 0.9999577], ['das', '0', 0.9999678], ['eine', '0', 0.99998224], ['Frage', ',', 0.9952265], ['Frau', '0', 0.99995995], ['M�ller', '?', 0.972517]]
77
 
78
 
79