--- tags: - trl - sft - generated_from_trainer - Text Generation - llama - t5 model-index: - name: Prompt-Enhace-T5-base results: [] datasets: - gokaygokay/prompt-enhancer-dataset license: apache-2.0 language: - en base_model: google-t5/t5-base library_name: transformers --- # omersaidd / Prompt-Enhace-T5-base This model was trained from scratch on an gokaygokay/prompt-enhancer-dataset dataset. Bu modelin eğitiminde gokaygokay/prompt-enhancer-dataset veriseti kullanılmşıtır ## Model description This model is trained with the google/t5-base and the database on prompt generation. Bu model google/t5-base ile prompt üretimek üzerine veriseti ile eğitilmişitir ## Intended uses & limitations More information needed ## Training and evaluation data Kullandığımız verisetimiz gokaygokay/prompt-enhancer-dataset Our dataset we use gokaygokay/prompt-enhancer-dataset ### Training hyperparameters Eğitim sırasında aşağıdaki hiperparametreler kullanılmıştır: The following hyperparameters were used during training: - learning_rate: 3e-6 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Framework versions - Transformers 4.43.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Test Model Code ```python model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) enhancer = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty= 1.2, device=device) max_target_length = 256 prefix = "enhance prompt: " short_prompt = "beautiful house with text 'hello'" answer = enhancer(prefix + short_prompt, max_length=max_target_length) final_answer = answer[0]['generated_text'] print(final_answer) ```