omni-research
commited on
Commit
•
b672c01
1
Parent(s):
1eca601
Update README.md
Browse files
README.md
CHANGED
@@ -1,51 +1,44 @@
|
|
1 |
-
---
|
2 |
-
license: llama2
|
3 |
-
---
|
4 |
-
|
5 |
-
# Tarsier Model Card
|
6 |
-
## Model details
|
7 |
-
**Model type:**
|
8 |
-
Tarsier-7b is one of the Tarsier family -- an open-source large-scale video-language models, which is designed to generate high-quality video descriptions, together with good capability of general video understanding (Tarsier-34b gains SOTA results on 6 open benchmarks). Base LLM: [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b)
|
9 |
-
|
10 |
-
**Model date:**
|
11 |
-
Tarsier-7b was trained in June 2024.
|
12 |
-
|
13 |
-
**Paper or resources for more information:**
|
14 |
-
- github repo: https://github.com/bytedance/tarsier
|
15 |
-
- paper link: https://arxiv.org/abs/2407.00634
|
16 |
-
|
17 |
-
## License
|
18 |
-
lmsys/vicuna-7b-v1.5 license.
|
19 |
-
|
20 |
-
**Where to send questions or comments about the model:**
|
21 |
-
https://github.com/bytedance/tarsier/issues
|
22 |
-
|
23 |
-
## Intended use
|
24 |
-
**Primary intended uses:**
|
25 |
-
The primary use of Tarsier is research on large multimodal models, especially video description.
|
26 |
-
|
27 |
-
**Primary intended users:**
|
28 |
-
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
29 |
-
|
30 |
-
## Training dataset
|
31 |
-
Tarsier tasks a two-stage training strategy.
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
- A challenging video desription dataset: [DREAM-1K](https://huggingface.co/datasets/omni-research/DREAM-1K)
|
46 |
-
- Multi-choice VQA: [MVBench](https://huggingface.co/datasets/OpenGVLab/MVBench), [NeXT-QA](https://github.com/doc-doc/NExT-QA) and [Egoschema](https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ)
|
47 |
-
- Open-ended VQA: [MSVD-QA](https://opendatalab.com/OpenDataLab/MSVD), [MSR-VTT-QA](https://opendatalab.com/OpenDataLab/MSR-VTT), [ActivityNet-QA](https://github.com/MILVLG/activitynet-qa) and [TGIF-QA](https://opendatalab.com/OpenDataLab/TGIF-QA)
|
48 |
-
- Video Caption: [MSVD-Caption](https://opendatalab.com/OpenDataLab/MSVD), [MSRVTT-Caption](https://opendatalab.com/OpenDataLab/MSR-VTT), [VATEX](https://eric-xw.github.io/vatex-website/about.html)
|
49 |
-
|
50 |
-
## How to Use
|
51 |
-
see https://github.com/bytedance/tarsier?tab=readme-ov-file#usage
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
---
|
4 |
+
|
5 |
+
# Tarsier Model Card
|
6 |
+
## Model details
|
7 |
+
**Model type:**
|
8 |
+
Tarsier-7b is one of the Tarsier family -- an open-source large-scale video-language models, which is designed to generate high-quality video descriptions, together with good capability of general video understanding (Tarsier-34b gains SOTA results on 6 open benchmarks). Base LLM: [liuhaotian/llava-v1.6-vicuna-7b](https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b)
|
9 |
+
|
10 |
+
**Model date:**
|
11 |
+
Tarsier-7b was trained in June 2024.
|
12 |
+
|
13 |
+
**Paper or resources for more information:**
|
14 |
+
- github repo: https://github.com/bytedance/tarsier
|
15 |
+
- paper link: https://arxiv.org/abs/2407.00634
|
16 |
+
|
17 |
+
## License
|
18 |
+
lmsys/vicuna-7b-v1.5 license.
|
19 |
+
|
20 |
+
**Where to send questions or comments about the model:**
|
21 |
+
https://github.com/bytedance/tarsier/issues
|
22 |
+
|
23 |
+
## Intended use
|
24 |
+
**Primary intended uses:**
|
25 |
+
The primary use of Tarsier is research on large multimodal models, especially video description.
|
26 |
+
|
27 |
+
**Primary intended users:**
|
28 |
+
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
29 |
+
|
30 |
+
## Training dataset
|
31 |
+
Tarsier tasks a two-stage training strategy.
|
32 |
+
- Stage-1: Multi-task Pre-training on 13M data
|
33 |
+
- Stage-2: Multi-grained Instruction Tuning on 500K data
|
34 |
+
|
35 |
+
In both stages, we freeze ViT and train all the parameters of projection layer and LLM.
|
36 |
+
|
37 |
+
## Evaluation dataset
|
38 |
+
- A challenging video desription dataset: [DREAM-1K](https://huggingface.co/datasets/omni-research/DREAM-1K)
|
39 |
+
- Multi-choice VQA: [MVBench](https://huggingface.co/datasets/OpenGVLab/MVBench), [NeXT-QA](https://github.com/doc-doc/NExT-QA) and [Egoschema](https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ)
|
40 |
+
- Open-ended VQA: [MSVD-QA](https://opendatalab.com/OpenDataLab/MSVD), [MSR-VTT-QA](https://opendatalab.com/OpenDataLab/MSR-VTT), [ActivityNet-QA](https://github.com/MILVLG/activitynet-qa) and [TGIF-QA](https://opendatalab.com/OpenDataLab/TGIF-QA)
|
41 |
+
- Video Caption: [MSVD-Caption](https://opendatalab.com/OpenDataLab/MSVD), [MSRVTT-Caption](https://opendatalab.com/OpenDataLab/MSR-VTT), [VATEX](https://eric-xw.github.io/vatex-website/about.html)
|
42 |
+
|
43 |
+
## How to Use
|
44 |
+
see https://github.com/bytedance/tarsier?tab=readme-ov-file#usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|