File size: 2,019 Bytes
68af004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947ab50
 
 
 
68af004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947ab50
 
 
 
 
 
68af004
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: flan-t5-small-qclassifier_new_0.5-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.0001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-small-qclassifier_new_0.5-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.0001

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6688
- Precision: 0.6014
- Recall: 1.0
- F1: 0.7511

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.6753        | 1.0   | 193  | 0.6688          | 0.6014    | 1.0    | 0.7511 |
| 0.6661        | 2.0   | 386  | 0.6618          | 0.6045    | 0.9914 | 0.7510 |
| 0.6588        | 3.0   | 579  | 0.6562          | 0.6154    | 0.9483 | 0.7464 |
| 0.6532        | 4.0   | 772  | 0.6538          | 0.6242    | 0.8933 | 0.7349 |
| 0.6498        | 5.0   | 965  | 0.6518          | 0.6533    | 0.8405 | 0.7352 |
| 0.6459        | 6.0   | 1158 | 0.6517          | 0.6560    | 0.8362 | 0.7352 |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1