File size: 2,097 Bytes
c3b7105 82a25d4 c3b7105 82a25d4 c3b7105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: flan-t5-small-qclassifier_new_0.5-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-qclassifier_new_0.5-droprob_0.2-smooth_0.1-lr_1e-5-dcy_0.1
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6607
- Precision: 0.6098
- Recall: 0.9752
- F1: 0.7504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.6843 | 1.0 | 193 | 0.6676 | 0.6044 | 0.9860 | 0.7494 |
| 0.6629 | 2.0 | 386 | 0.6607 | 0.6098 | 0.9752 | 0.7504 |
| 0.6563 | 3.0 | 579 | 0.6551 | 0.6186 | 0.9386 | 0.7457 |
| 0.6515 | 4.0 | 772 | 0.6532 | 0.6281 | 0.9116 | 0.7437 |
| 0.649 | 5.0 | 965 | 0.6516 | 0.6445 | 0.8578 | 0.7360 |
| 0.6444 | 6.0 | 1158 | 0.6512 | 0.6479 | 0.8567 | 0.7378 |
| 0.6434 | 7.0 | 1351 | 0.6511 | 0.6551 | 0.8556 | 0.7421 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|