onizukal's picture
End of training
980befd verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6555735930735931

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0039
  • Accuracy: 0.6556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1079 1.0 923 1.1521 0.6025
0.921 2.0 1846 1.0560 0.6326
0.6516 3.0 2769 1.0430 0.6442
0.3542 4.0 3692 1.2268 0.6399
0.2629 5.0 4615 1.3655 0.6496
0.2053 6.0 5538 1.6123 0.6415
0.0506 7.0 6461 1.9244 0.6383
0.0801 8.0 7384 2.1949 0.6334
0.079 9.0 8307 2.3005 0.6437
0.0549 10.0 9230 2.5668 0.6442
0.0012 11.0 10153 2.6623 0.6445
0.0562 12.0 11076 2.7298 0.6496
0.0187 13.0 11999 2.7730 0.6537
0.0405 14.0 12922 2.8958 0.6483
0.0037 15.0 13845 2.9177 0.6564
0.0009 16.0 14768 2.9650 0.6572
0.0001 17.0 15691 3.0071 0.6548
0.0009 18.0 16614 2.9743 0.6585
0.0024 19.0 17537 2.9839 0.6572
0.0003 20.0 18460 3.0039 0.6556

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1