Ontocord.AI
commited on
Commit
·
cae5ca5
1
Parent(s):
bf40459
Create modeling_fcrnn.py
Browse files- modeling_fcrnn.py +1926 -0
modeling_fcrnn.py
ADDED
@@ -0,0 +1,1926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
coding=utf-8
|
3 |
+
Copyright 2022, Ontocord, LLC
|
4 |
+
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
|
5 |
+
Adapted From Facebook Inc, Detectron2 && Huggingface Co.
|
6 |
+
|
7 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
you may not use this file except in compliance with the License.
|
9 |
+
You may obtain a copy of the License at
|
10 |
+
|
11 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
|
13 |
+
Unless required by applicable law or agreed to in writing, software
|
14 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
See the License for the specific language governing permissions and
|
17 |
+
limitations under the License.import copy
|
18 |
+
"""
|
19 |
+
import itertools
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
from abc import ABCMeta, abstractmethod
|
23 |
+
from collections import OrderedDict, namedtuple
|
24 |
+
from typing import Dict, List, Tuple
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn.modules.batchnorm import BatchNorm2d
|
30 |
+
from torchvision.ops import RoIPool
|
31 |
+
from torchvision.ops.boxes import batched_nms, nms
|
32 |
+
|
33 |
+
from .utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint
|
34 |
+
|
35 |
+
|
36 |
+
# other:
|
37 |
+
def norm_box(boxes, raw_sizes):
|
38 |
+
if not isinstance(boxes, torch.Tensor):
|
39 |
+
normalized_boxes = boxes.copy()
|
40 |
+
else:
|
41 |
+
normalized_boxes = boxes.clone()
|
42 |
+
normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1].view(-1, 1, 1)
|
43 |
+
normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0].view(-1, 1, 1)
|
44 |
+
return normalized_boxes
|
45 |
+
|
46 |
+
|
47 |
+
def pad_list_tensors(
|
48 |
+
list_tensors,
|
49 |
+
preds_per_image,
|
50 |
+
max_detections=None,
|
51 |
+
return_tensors=None,
|
52 |
+
padding=None,
|
53 |
+
pad_value=0,
|
54 |
+
location=None,
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
location will always be cpu for np tensors
|
58 |
+
"""
|
59 |
+
if location is None:
|
60 |
+
location = "cpu"
|
61 |
+
assert return_tensors in {"pt", "np", None}
|
62 |
+
assert padding in {"max_detections", "max_batch", None}
|
63 |
+
new = []
|
64 |
+
if padding is None:
|
65 |
+
if return_tensors is None:
|
66 |
+
return list_tensors
|
67 |
+
elif return_tensors == "pt":
|
68 |
+
if not isinstance(list_tensors, torch.Tensor):
|
69 |
+
return torch.stack(list_tensors).to(location)
|
70 |
+
else:
|
71 |
+
return list_tensors.to(location)
|
72 |
+
else:
|
73 |
+
if not isinstance(list_tensors, list):
|
74 |
+
return np.array(list_tensors.to(location))
|
75 |
+
else:
|
76 |
+
return list_tensors.to(location)
|
77 |
+
if padding == "max_detections":
|
78 |
+
assert max_detections is not None, "specify max number of detections per batch"
|
79 |
+
elif padding == "max_batch":
|
80 |
+
max_detections = max(preds_per_image)
|
81 |
+
for i in range(len(list_tensors)):
|
82 |
+
too_small = False
|
83 |
+
tensor_i = list_tensors.pop(0)
|
84 |
+
if tensor_i.ndim < 2:
|
85 |
+
too_small = True
|
86 |
+
tensor_i = tensor_i.unsqueeze(-1)
|
87 |
+
assert isinstance(tensor_i, torch.Tensor)
|
88 |
+
tensor_i = nn.functional.pad(
|
89 |
+
input=tensor_i,
|
90 |
+
pad=(0, 0, 0, max_detections - preds_per_image[i]),
|
91 |
+
mode="constant",
|
92 |
+
value=pad_value,
|
93 |
+
)
|
94 |
+
if too_small:
|
95 |
+
tensor_i = tensor_i.squeeze(-1)
|
96 |
+
if return_tensors is None:
|
97 |
+
if location == "cpu":
|
98 |
+
tensor_i = tensor_i.cpu()
|
99 |
+
tensor_i = tensor_i.tolist()
|
100 |
+
if return_tensors == "np":
|
101 |
+
if location == "cpu":
|
102 |
+
tensor_i = tensor_i.cpu()
|
103 |
+
tensor_i = tensor_i.numpy()
|
104 |
+
else:
|
105 |
+
if location == "cpu":
|
106 |
+
tensor_i = tensor_i.cpu()
|
107 |
+
new.append(tensor_i)
|
108 |
+
if return_tensors == "np":
|
109 |
+
return np.stack(new, axis=0)
|
110 |
+
elif return_tensors == "pt" and not isinstance(new, torch.Tensor):
|
111 |
+
return torch.stack(new, dim=0)
|
112 |
+
else:
|
113 |
+
return list_tensors
|
114 |
+
|
115 |
+
|
116 |
+
def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd):
|
117 |
+
scores = scores[:, :-1]
|
118 |
+
num_bbox_reg_classes = boxes.shape[1] // 4
|
119 |
+
# Convert to Boxes to use the `clip` function ...
|
120 |
+
boxes = boxes.reshape(-1, 4)
|
121 |
+
_clip_box(boxes, image_shape)
|
122 |
+
boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4
|
123 |
+
|
124 |
+
# Select max scores
|
125 |
+
max_scores, max_classes = scores.max(1) # R x C --> R
|
126 |
+
num_objs = boxes.size(0)
|
127 |
+
boxes = boxes.view(-1, 4)
|
128 |
+
idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes
|
129 |
+
max_boxes = boxes[idxs] # Select max boxes according to the max scores.
|
130 |
+
|
131 |
+
# Apply NMS
|
132 |
+
keep = nms(max_boxes, max_scores, nms_thresh)
|
133 |
+
keep = keep[:maxd]
|
134 |
+
if keep.shape[-1] >= mind and keep.shape[-1] <= maxd:
|
135 |
+
max_boxes, max_scores = max_boxes[keep], max_scores[keep]
|
136 |
+
classes = max_classes[keep]
|
137 |
+
return max_boxes, max_scores, classes, keep
|
138 |
+
else:
|
139 |
+
return None
|
140 |
+
|
141 |
+
|
142 |
+
# Helper Functions
|
143 |
+
def _clip_box(tensor, box_size: Tuple[int, int]):
|
144 |
+
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
|
145 |
+
h, w = box_size
|
146 |
+
tensor[:, 0].clamp_(min=0, max=w)
|
147 |
+
tensor[:, 1].clamp_(min=0, max=h)
|
148 |
+
tensor[:, 2].clamp_(min=0, max=w)
|
149 |
+
tensor[:, 3].clamp_(min=0, max=h)
|
150 |
+
|
151 |
+
|
152 |
+
def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor:
|
153 |
+
widths = box[:, 2] - box[:, 0]
|
154 |
+
heights = box[:, 3] - box[:, 1]
|
155 |
+
keep = (widths > threshold) & (heights > threshold)
|
156 |
+
return keep
|
157 |
+
|
158 |
+
|
159 |
+
def get_norm(norm, out_channels):
|
160 |
+
if isinstance(norm, str):
|
161 |
+
if len(norm) == 0:
|
162 |
+
return None
|
163 |
+
norm = {
|
164 |
+
"BN": BatchNorm2d,
|
165 |
+
"GN": lambda channels: nn.GroupNorm(32, channels),
|
166 |
+
"nnSyncBN": nn.SyncBatchNorm, # keep for debugging
|
167 |
+
"": lambda x: x,
|
168 |
+
}[norm]
|
169 |
+
return norm(out_channels)
|
170 |
+
|
171 |
+
|
172 |
+
def _create_grid_offsets(size: List[int], stride: int, offset: float, device):
|
173 |
+
|
174 |
+
grid_height, grid_width = size
|
175 |
+
shifts_x = torch.arange(
|
176 |
+
offset * stride,
|
177 |
+
grid_width * stride,
|
178 |
+
step=stride,
|
179 |
+
dtype=torch.float32,
|
180 |
+
device=device,
|
181 |
+
)
|
182 |
+
shifts_y = torch.arange(
|
183 |
+
offset * stride,
|
184 |
+
grid_height * stride,
|
185 |
+
step=stride,
|
186 |
+
dtype=torch.float32,
|
187 |
+
device=device,
|
188 |
+
)
|
189 |
+
|
190 |
+
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
|
191 |
+
shift_x = shift_x.reshape(-1)
|
192 |
+
shift_y = shift_y.reshape(-1)
|
193 |
+
return shift_x, shift_y
|
194 |
+
|
195 |
+
|
196 |
+
def build_backbone(cfg):
|
197 |
+
input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
|
198 |
+
norm = cfg.RESNETS.NORM
|
199 |
+
stem = BasicStem(
|
200 |
+
in_channels=input_shape.channels,
|
201 |
+
out_channels=cfg.RESNETS.STEM_OUT_CHANNELS,
|
202 |
+
norm=norm,
|
203 |
+
caffe_maxpool=cfg.MODEL.MAX_POOL,
|
204 |
+
)
|
205 |
+
freeze_at = cfg.BACKBONE.FREEZE_AT
|
206 |
+
|
207 |
+
if freeze_at >= 1:
|
208 |
+
for p in stem.parameters():
|
209 |
+
p.requires_grad = False
|
210 |
+
|
211 |
+
out_features = cfg.RESNETS.OUT_FEATURES
|
212 |
+
depth = cfg.RESNETS.DEPTH
|
213 |
+
num_groups = cfg.RESNETS.NUM_GROUPS
|
214 |
+
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
|
215 |
+
bottleneck_channels = num_groups * width_per_group
|
216 |
+
in_channels = cfg.RESNETS.STEM_OUT_CHANNELS
|
217 |
+
out_channels = cfg.RESNETS.RES2_OUT_CHANNELS
|
218 |
+
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
|
219 |
+
res5_dilation = cfg.RESNETS.RES5_DILATION
|
220 |
+
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
|
221 |
+
|
222 |
+
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
|
223 |
+
|
224 |
+
stages = []
|
225 |
+
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
|
226 |
+
max_stage_idx = max(out_stage_idx)
|
227 |
+
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
|
228 |
+
dilation = res5_dilation if stage_idx == 5 else 1
|
229 |
+
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
|
230 |
+
stage_kargs = {
|
231 |
+
"num_blocks": num_blocks_per_stage[idx],
|
232 |
+
"first_stride": first_stride,
|
233 |
+
"in_channels": in_channels,
|
234 |
+
"bottleneck_channels": bottleneck_channels,
|
235 |
+
"out_channels": out_channels,
|
236 |
+
"num_groups": num_groups,
|
237 |
+
"norm": norm,
|
238 |
+
"stride_in_1x1": stride_in_1x1,
|
239 |
+
"dilation": dilation,
|
240 |
+
}
|
241 |
+
|
242 |
+
stage_kargs["block_class"] = BottleneckBlock
|
243 |
+
blocks = ResNet.make_stage(**stage_kargs)
|
244 |
+
in_channels = out_channels
|
245 |
+
out_channels *= 2
|
246 |
+
bottleneck_channels *= 2
|
247 |
+
|
248 |
+
if freeze_at >= stage_idx:
|
249 |
+
for block in blocks:
|
250 |
+
block.freeze()
|
251 |
+
stages.append(blocks)
|
252 |
+
|
253 |
+
return ResNet(stem, stages, out_features=out_features)
|
254 |
+
|
255 |
+
|
256 |
+
def find_top_rpn_proposals(
|
257 |
+
proposals,
|
258 |
+
pred_objectness_logits,
|
259 |
+
images,
|
260 |
+
image_sizes,
|
261 |
+
nms_thresh,
|
262 |
+
pre_nms_topk,
|
263 |
+
post_nms_topk,
|
264 |
+
min_box_side_len,
|
265 |
+
training,
|
266 |
+
):
|
267 |
+
"""Args:
|
268 |
+
proposals (list[Tensor]): (L, N, Hi*Wi*A, 4).
|
269 |
+
pred_objectness_logits: tensors of length L.
|
270 |
+
nms_thresh (float): IoU threshold to use for NMS
|
271 |
+
pre_nms_topk (int): before nms
|
272 |
+
post_nms_topk (int): after nms
|
273 |
+
min_box_side_len (float): minimum proposal box side
|
274 |
+
training (bool): True if proposals are to be used in training,
|
275 |
+
Returns:
|
276 |
+
results (List[Dict]): stores post_nms_topk object proposals for image i.
|
277 |
+
"""
|
278 |
+
num_images = len(images)
|
279 |
+
device = proposals[0].device
|
280 |
+
|
281 |
+
# 1. Select top-k anchor for every level and every image
|
282 |
+
topk_scores = [] # #lvl Tensor, each of shape N x topk
|
283 |
+
topk_proposals = []
|
284 |
+
level_ids = [] # #lvl Tensor, each of shape (topk,)
|
285 |
+
batch_idx = torch.arange(num_images, device=device)
|
286 |
+
for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits):
|
287 |
+
Hi_Wi_A = logits_i.shape[1]
|
288 |
+
num_proposals_i = min(pre_nms_topk, Hi_Wi_A)
|
289 |
+
|
290 |
+
# sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812)
|
291 |
+
# topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
|
292 |
+
logits_i, idx = logits_i.sort(descending=True, dim=1)
|
293 |
+
topk_scores_i = logits_i[batch_idx, :num_proposals_i]
|
294 |
+
topk_idx = idx[batch_idx, :num_proposals_i]
|
295 |
+
|
296 |
+
# each is N x topk
|
297 |
+
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4
|
298 |
+
|
299 |
+
topk_proposals.append(topk_proposals_i)
|
300 |
+
topk_scores.append(topk_scores_i)
|
301 |
+
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))
|
302 |
+
|
303 |
+
# 2. Concat all levels together
|
304 |
+
topk_scores = torch.cat(topk_scores, dim=1)
|
305 |
+
topk_proposals = torch.cat(topk_proposals, dim=1)
|
306 |
+
level_ids = torch.cat(level_ids, dim=0)
|
307 |
+
|
308 |
+
# if I change to batched_nms, I wonder if this will make a difference
|
309 |
+
# 3. For each image, run a per-level NMS, and choose topk results.
|
310 |
+
results = []
|
311 |
+
for n, image_size in enumerate(image_sizes):
|
312 |
+
boxes = topk_proposals[n]
|
313 |
+
scores_per_img = topk_scores[n]
|
314 |
+
# I will have to take a look at the boxes clip method
|
315 |
+
_clip_box(boxes, image_size)
|
316 |
+
# filter empty boxes
|
317 |
+
keep = _nonempty_boxes(boxes, threshold=min_box_side_len)
|
318 |
+
lvl = level_ids
|
319 |
+
if keep.sum().item() != len(boxes):
|
320 |
+
boxes, scores_per_img, lvl = (
|
321 |
+
boxes[keep],
|
322 |
+
scores_per_img[keep],
|
323 |
+
level_ids[keep],
|
324 |
+
)
|
325 |
+
|
326 |
+
keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh)
|
327 |
+
keep = keep[:post_nms_topk]
|
328 |
+
|
329 |
+
res = (boxes[keep], scores_per_img[keep])
|
330 |
+
results.append(res)
|
331 |
+
|
332 |
+
# I wonder if it would be possible for me to pad all these things.
|
333 |
+
return results
|
334 |
+
|
335 |
+
|
336 |
+
def subsample_labels(labels, num_samples, positive_fraction, bg_label):
|
337 |
+
"""
|
338 |
+
Returns:
|
339 |
+
pos_idx, neg_idx (Tensor):
|
340 |
+
1D vector of indices. The total length of both is `num_samples` or fewer.
|
341 |
+
"""
|
342 |
+
positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1)
|
343 |
+
negative = torch.nonzero(labels == bg_label).squeeze(1)
|
344 |
+
|
345 |
+
num_pos = int(num_samples * positive_fraction)
|
346 |
+
# protect against not enough positive examples
|
347 |
+
num_pos = min(positive.numel(), num_pos)
|
348 |
+
num_neg = num_samples - num_pos
|
349 |
+
# protect against not enough negative examples
|
350 |
+
num_neg = min(negative.numel(), num_neg)
|
351 |
+
|
352 |
+
# randomly select positive and negative examples
|
353 |
+
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
|
354 |
+
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
|
355 |
+
|
356 |
+
pos_idx = positive[perm1]
|
357 |
+
neg_idx = negative[perm2]
|
358 |
+
return pos_idx, neg_idx
|
359 |
+
|
360 |
+
|
361 |
+
def add_ground_truth_to_proposals(gt_boxes, proposals):
|
362 |
+
raise NotImplementedError()
|
363 |
+
|
364 |
+
|
365 |
+
def add_ground_truth_to_proposals_single_image(gt_boxes, proposals):
|
366 |
+
raise NotImplementedError()
|
367 |
+
|
368 |
+
|
369 |
+
def _fmt_box_list(box_tensor, batch_index: int):
|
370 |
+
repeated_index = torch.full(
|
371 |
+
(len(box_tensor), 1),
|
372 |
+
batch_index,
|
373 |
+
dtype=box_tensor.dtype,
|
374 |
+
device=box_tensor.device,
|
375 |
+
)
|
376 |
+
return torch.cat((repeated_index, box_tensor), dim=1)
|
377 |
+
|
378 |
+
|
379 |
+
def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]):
|
380 |
+
pooler_fmt_boxes = torch.cat(
|
381 |
+
[_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)],
|
382 |
+
dim=0,
|
383 |
+
)
|
384 |
+
return pooler_fmt_boxes
|
385 |
+
|
386 |
+
|
387 |
+
def assign_boxes_to_levels(
|
388 |
+
box_lists: List[torch.Tensor],
|
389 |
+
min_level: int,
|
390 |
+
max_level: int,
|
391 |
+
canonical_box_size: int,
|
392 |
+
canonical_level: int,
|
393 |
+
):
|
394 |
+
|
395 |
+
box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists]))
|
396 |
+
# Eqn.(1) in FPN paper
|
397 |
+
level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
|
398 |
+
# clamp level to (min, max), in case the box size is too large or too small
|
399 |
+
# for the available feature maps
|
400 |
+
level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
|
401 |
+
return level_assignments.to(torch.int64) - min_level
|
402 |
+
|
403 |
+
|
404 |
+
# Helper Classes
|
405 |
+
class _NewEmptyTensorOp(torch.autograd.Function):
|
406 |
+
@staticmethod
|
407 |
+
def forward(ctx, x, new_shape):
|
408 |
+
ctx.shape = x.shape
|
409 |
+
return x.new_empty(new_shape)
|
410 |
+
|
411 |
+
@staticmethod
|
412 |
+
def backward(ctx, grad):
|
413 |
+
shape = ctx.shape
|
414 |
+
return _NewEmptyTensorOp.apply(grad, shape), None
|
415 |
+
|
416 |
+
|
417 |
+
class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])):
|
418 |
+
def __new__(cls, *, channels=None, height=None, width=None, stride=None):
|
419 |
+
return super().__new__(cls, channels, height, width, stride)
|
420 |
+
|
421 |
+
|
422 |
+
class Box2BoxTransform(object):
|
423 |
+
"""
|
424 |
+
This R-CNN transformation scales the box's width and height
|
425 |
+
by exp(dw), exp(dh) and shifts a box's center by the offset
|
426 |
+
(dx * width, dy * height).
|
427 |
+
"""
|
428 |
+
|
429 |
+
def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None):
|
430 |
+
"""
|
431 |
+
Args:
|
432 |
+
weights (4-element tuple): Scaling factors that are applied to the
|
433 |
+
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
|
434 |
+
such that the deltas have unit variance; now they are treated as
|
435 |
+
hyperparameters of the system.
|
436 |
+
scale_clamp (float): When predicting deltas, the predicted box scaling
|
437 |
+
factors (dw and dh) are clamped such that they are <= scale_clamp.
|
438 |
+
"""
|
439 |
+
self.weights = weights
|
440 |
+
if scale_clamp is not None:
|
441 |
+
self.scale_clamp = scale_clamp
|
442 |
+
else:
|
443 |
+
"""
|
444 |
+
Value for clamping large dw and dh predictions.
|
445 |
+
The heuristic is that we clamp such that dw and dh are no larger
|
446 |
+
than what would transform a 16px box into a 1000px box
|
447 |
+
(based on a small anchor, 16px, and a typical image size, 1000px).
|
448 |
+
"""
|
449 |
+
self.scale_clamp = math.log(1000.0 / 16)
|
450 |
+
|
451 |
+
def get_deltas(self, src_boxes, target_boxes):
|
452 |
+
"""
|
453 |
+
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
|
454 |
+
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
455 |
+
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
|
456 |
+
any delta is too large and is clamped).
|
457 |
+
Args:
|
458 |
+
src_boxes (Tensor): source boxes, e.g., object proposals
|
459 |
+
target_boxes (Tensor): target of the transformation, e.g., ground-truth
|
460 |
+
boxes.
|
461 |
+
"""
|
462 |
+
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
463 |
+
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
464 |
+
|
465 |
+
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
|
466 |
+
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
|
467 |
+
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
|
468 |
+
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
|
469 |
+
|
470 |
+
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
|
471 |
+
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
|
472 |
+
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
|
473 |
+
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
|
474 |
+
|
475 |
+
wx, wy, ww, wh = self.weights
|
476 |
+
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
|
477 |
+
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
|
478 |
+
dw = ww * torch.log(target_widths / src_widths)
|
479 |
+
dh = wh * torch.log(target_heights / src_heights)
|
480 |
+
|
481 |
+
deltas = torch.stack((dx, dy, dw, dh), dim=1)
|
482 |
+
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
|
483 |
+
return deltas
|
484 |
+
|
485 |
+
def apply_deltas(self, deltas, boxes):
|
486 |
+
"""
|
487 |
+
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
|
488 |
+
Args:
|
489 |
+
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
|
490 |
+
deltas[i] represents k potentially different class-specific
|
491 |
+
box transformations for the single box boxes[i].
|
492 |
+
boxes (Tensor): boxes to transform, of shape (N, 4)
|
493 |
+
"""
|
494 |
+
boxes = boxes.to(deltas.dtype)
|
495 |
+
|
496 |
+
widths = boxes[:, 2] - boxes[:, 0]
|
497 |
+
heights = boxes[:, 3] - boxes[:, 1]
|
498 |
+
ctr_x = boxes[:, 0] + 0.5 * widths
|
499 |
+
ctr_y = boxes[:, 1] + 0.5 * heights
|
500 |
+
|
501 |
+
wx, wy, ww, wh = self.weights
|
502 |
+
dx = deltas[:, 0::4] / wx
|
503 |
+
dy = deltas[:, 1::4] / wy
|
504 |
+
dw = deltas[:, 2::4] / ww
|
505 |
+
dh = deltas[:, 3::4] / wh
|
506 |
+
|
507 |
+
# Prevent sending too large values into torch.exp()
|
508 |
+
dw = torch.clamp(dw, max=self.scale_clamp)
|
509 |
+
dh = torch.clamp(dh, max=self.scale_clamp)
|
510 |
+
|
511 |
+
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
|
512 |
+
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
|
513 |
+
pred_w = torch.exp(dw) * widths[:, None]
|
514 |
+
pred_h = torch.exp(dh) * heights[:, None]
|
515 |
+
|
516 |
+
pred_boxes = torch.zeros_like(deltas)
|
517 |
+
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
|
518 |
+
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
|
519 |
+
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
|
520 |
+
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
|
521 |
+
return pred_boxes
|
522 |
+
|
523 |
+
|
524 |
+
class Matcher(object):
|
525 |
+
"""
|
526 |
+
This class assigns to each predicted "element" (e.g., a box) a ground-truth
|
527 |
+
element. Each predicted element will have exactly zero or one matches; each
|
528 |
+
ground-truth element may be matched to zero or more predicted elements.
|
529 |
+
The matching is determined by the MxN match_quality_matrix, that characterizes
|
530 |
+
how well each (ground-truth, prediction)-pair match each other. For example,
|
531 |
+
if the elements are boxes, this matrix may contain box intersection-over-union
|
532 |
+
overlap values.
|
533 |
+
The matcher returns (a) a vector of length N containing the index of the
|
534 |
+
ground-truth element m in [0, M) that matches to prediction n in [0, N).
|
535 |
+
(b) a vector of length N containing the labels for each prediction.
|
536 |
+
"""
|
537 |
+
|
538 |
+
def __init__(
|
539 |
+
self,
|
540 |
+
thresholds: List[float],
|
541 |
+
labels: List[int],
|
542 |
+
allow_low_quality_matches: bool = False,
|
543 |
+
):
|
544 |
+
"""
|
545 |
+
Args:
|
546 |
+
thresholds (list): a list of thresholds used to stratify predictions
|
547 |
+
into levels.
|
548 |
+
labels (list): a list of values to label predictions belonging at
|
549 |
+
each level. A label can be one of {-1, 0, 1} signifying
|
550 |
+
{ignore, negative class, positive class}, respectively.
|
551 |
+
allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold.
|
552 |
+
For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
|
553 |
+
thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
|
554 |
+
thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives.
|
555 |
+
"""
|
556 |
+
thresholds = thresholds[:]
|
557 |
+
assert thresholds[0] > 0
|
558 |
+
thresholds.insert(0, -float("inf"))
|
559 |
+
thresholds.append(float("inf"))
|
560 |
+
assert all([low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])])
|
561 |
+
assert all([label_i in [-1, 0, 1] for label_i in labels])
|
562 |
+
assert len(labels) == len(thresholds) - 1
|
563 |
+
self.thresholds = thresholds
|
564 |
+
self.labels = labels
|
565 |
+
self.allow_low_quality_matches = allow_low_quality_matches
|
566 |
+
|
567 |
+
def __call__(self, match_quality_matrix):
|
568 |
+
"""
|
569 |
+
Args:
|
570 |
+
match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted
|
571 |
+
elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).
|
572 |
+
Returns:
|
573 |
+
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)
|
574 |
+
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored
|
575 |
+
"""
|
576 |
+
assert match_quality_matrix.dim() == 2
|
577 |
+
if match_quality_matrix.numel() == 0:
|
578 |
+
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
|
579 |
+
# When no gt boxes exist, we define IOU = 0 and therefore set labels
|
580 |
+
# to `self.labels[0]`, which usually defaults to background class 0
|
581 |
+
# To choose to ignore instead,
|
582 |
+
# can make labels=[-1,0,-1,1] + set appropriate thresholds
|
583 |
+
default_match_labels = match_quality_matrix.new_full(
|
584 |
+
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
|
585 |
+
)
|
586 |
+
return default_matches, default_match_labels
|
587 |
+
|
588 |
+
assert torch.all(match_quality_matrix >= 0)
|
589 |
+
|
590 |
+
# match_quality_matrix is M (gt) x N (predicted)
|
591 |
+
# Max over gt elements (dim 0) to find best gt candidate for each prediction
|
592 |
+
matched_vals, matches = match_quality_matrix.max(dim=0)
|
593 |
+
|
594 |
+
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
|
595 |
+
|
596 |
+
for (l, low, high) in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
|
597 |
+
low_high = (matched_vals >= low) & (matched_vals < high)
|
598 |
+
match_labels[low_high] = l
|
599 |
+
|
600 |
+
if self.allow_low_quality_matches:
|
601 |
+
self.set_low_quality_matches_(match_labels, match_quality_matrix)
|
602 |
+
|
603 |
+
return matches, match_labels
|
604 |
+
|
605 |
+
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
|
606 |
+
"""
|
607 |
+
Produce additional matches for predictions that have only low-quality matches.
|
608 |
+
Specifically, for each ground-truth G find the set of predictions that have
|
609 |
+
maximum overlap with it (including ties); for each prediction in that set, if
|
610 |
+
it is unmatched, then match it to the ground-truth G.
|
611 |
+
This function implements the RPN assignment case (i)
|
612 |
+
in Sec. 3.1.2 of Faster R-CNN.
|
613 |
+
"""
|
614 |
+
# For each gt, find the prediction with which it has highest quality
|
615 |
+
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
|
616 |
+
# Find the highest quality match available, even if it is low, including ties.
|
617 |
+
# Note that the matches qualities must be positive due to the use of
|
618 |
+
# `torch.nonzero`.
|
619 |
+
of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None]
|
620 |
+
if of_quality_inds.dim() == 0:
|
621 |
+
(_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1)
|
622 |
+
else:
|
623 |
+
(_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1)
|
624 |
+
match_labels[pred_inds_with_highest_quality] = 1
|
625 |
+
|
626 |
+
|
627 |
+
class RPNOutputs(object):
|
628 |
+
def __init__(
|
629 |
+
self,
|
630 |
+
box2box_transform,
|
631 |
+
anchor_matcher,
|
632 |
+
batch_size_per_image,
|
633 |
+
positive_fraction,
|
634 |
+
images,
|
635 |
+
pred_objectness_logits,
|
636 |
+
pred_anchor_deltas,
|
637 |
+
anchors,
|
638 |
+
boundary_threshold=0,
|
639 |
+
gt_boxes=None,
|
640 |
+
smooth_l1_beta=0.0,
|
641 |
+
):
|
642 |
+
"""
|
643 |
+
Args:
|
644 |
+
box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations.
|
645 |
+
anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels.
|
646 |
+
batch_size_per_image (int): number of proposals to sample when training
|
647 |
+
positive_fraction (float): target fraction of sampled proposals that should be positive
|
648 |
+
images (ImageList): :class:`ImageList` instance representing N input images
|
649 |
+
pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W)
|
650 |
+
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi)
|
651 |
+
anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l
|
652 |
+
boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training.
|
653 |
+
gt_boxes (list[Boxes], optional): A list of N elements.
|
654 |
+
smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored
|
655 |
+
"""
|
656 |
+
self.box2box_transform = box2box_transform
|
657 |
+
self.anchor_matcher = anchor_matcher
|
658 |
+
self.batch_size_per_image = batch_size_per_image
|
659 |
+
self.positive_fraction = positive_fraction
|
660 |
+
self.pred_objectness_logits = pred_objectness_logits
|
661 |
+
self.pred_anchor_deltas = pred_anchor_deltas
|
662 |
+
|
663 |
+
self.anchors = anchors
|
664 |
+
self.gt_boxes = gt_boxes
|
665 |
+
self.num_feature_maps = len(pred_objectness_logits)
|
666 |
+
self.num_images = len(images)
|
667 |
+
self.boundary_threshold = boundary_threshold
|
668 |
+
self.smooth_l1_beta = smooth_l1_beta
|
669 |
+
|
670 |
+
def _get_ground_truth(self):
|
671 |
+
raise NotImplementedError()
|
672 |
+
|
673 |
+
def predict_proposals(self):
|
674 |
+
# pred_anchor_deltas: (L, N, ? Hi, Wi)
|
675 |
+
# anchors:(N, L, -1, B)
|
676 |
+
# here we loop over specific feature map, NOT images
|
677 |
+
proposals = []
|
678 |
+
anchors = self.anchors.transpose(0, 1)
|
679 |
+
for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
|
680 |
+
B = anchors_i.size(-1)
|
681 |
+
N, _, Hi, Wi = pred_anchor_deltas_i.shape
|
682 |
+
anchors_i = anchors_i.flatten(start_dim=0, end_dim=1)
|
683 |
+
pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
|
684 |
+
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
|
685 |
+
# Append feature map proposals with shape (N, Hi*Wi*A, B)
|
686 |
+
proposals.append(proposals_i.view(N, -1, B))
|
687 |
+
proposals = torch.stack(proposals)
|
688 |
+
return proposals
|
689 |
+
|
690 |
+
def predict_objectness_logits(self):
|
691 |
+
"""
|
692 |
+
Returns:
|
693 |
+
pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A).
|
694 |
+
"""
|
695 |
+
pred_objectness_logits = [
|
696 |
+
# Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
|
697 |
+
score.permute(0, 2, 3, 1).reshape(self.num_images, -1)
|
698 |
+
for score in self.pred_objectness_logits
|
699 |
+
]
|
700 |
+
return pred_objectness_logits
|
701 |
+
|
702 |
+
|
703 |
+
# Main Classes
|
704 |
+
class Conv2d(nn.Conv2d):
|
705 |
+
def __init__(self, *args, **kwargs):
|
706 |
+
norm = kwargs.pop("norm", None)
|
707 |
+
activation = kwargs.pop("activation", None)
|
708 |
+
super().__init__(*args, **kwargs)
|
709 |
+
|
710 |
+
self.norm = norm
|
711 |
+
self.activation = activation
|
712 |
+
|
713 |
+
def forward(self, x):
|
714 |
+
if x.numel() == 0 and self.training:
|
715 |
+
assert not isinstance(self.norm, nn.SyncBatchNorm)
|
716 |
+
if x.numel() == 0:
|
717 |
+
assert not isinstance(self.norm, nn.GroupNorm)
|
718 |
+
output_shape = [
|
719 |
+
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
|
720 |
+
for i, p, di, k, s in zip(
|
721 |
+
x.shape[-2:],
|
722 |
+
self.padding,
|
723 |
+
self.dilation,
|
724 |
+
self.kernel_size,
|
725 |
+
self.stride,
|
726 |
+
)
|
727 |
+
]
|
728 |
+
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
|
729 |
+
empty = _NewEmptyTensorOp.apply(x, output_shape)
|
730 |
+
if self.training:
|
731 |
+
_dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
|
732 |
+
return empty + _dummy
|
733 |
+
else:
|
734 |
+
return empty
|
735 |
+
|
736 |
+
x = super().forward(x)
|
737 |
+
if self.norm is not None:
|
738 |
+
x = self.norm(x)
|
739 |
+
if self.activation is not None:
|
740 |
+
x = self.activation(x)
|
741 |
+
return x
|
742 |
+
|
743 |
+
|
744 |
+
class LastLevelMaxPool(nn.Module):
|
745 |
+
"""
|
746 |
+
This module is used in the original FPN to generate a downsampled P6 feature from P5.
|
747 |
+
"""
|
748 |
+
|
749 |
+
def __init__(self):
|
750 |
+
super().__init__()
|
751 |
+
self.num_levels = 1
|
752 |
+
self.in_feature = "p5"
|
753 |
+
|
754 |
+
def forward(self, x):
|
755 |
+
return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)]
|
756 |
+
|
757 |
+
|
758 |
+
class LastLevelP6P7(nn.Module):
|
759 |
+
"""
|
760 |
+
This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature.
|
761 |
+
"""
|
762 |
+
|
763 |
+
def __init__(self, in_channels, out_channels):
|
764 |
+
super().__init__()
|
765 |
+
self.num_levels = 2
|
766 |
+
self.in_feature = "res5"
|
767 |
+
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
|
768 |
+
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
|
769 |
+
|
770 |
+
def forward(self, c5):
|
771 |
+
p6 = self.p6(c5)
|
772 |
+
p7 = self.p7(nn.functional.relu(p6))
|
773 |
+
return [p6, p7]
|
774 |
+
|
775 |
+
|
776 |
+
class BasicStem(nn.Module):
|
777 |
+
def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False):
|
778 |
+
super().__init__()
|
779 |
+
self.conv1 = Conv2d(
|
780 |
+
in_channels,
|
781 |
+
out_channels,
|
782 |
+
kernel_size=7,
|
783 |
+
stride=2,
|
784 |
+
padding=3,
|
785 |
+
bias=False,
|
786 |
+
norm=get_norm(norm, out_channels),
|
787 |
+
)
|
788 |
+
self.caffe_maxpool = caffe_maxpool
|
789 |
+
# use pad 1 instead of pad zero
|
790 |
+
|
791 |
+
def forward(self, x):
|
792 |
+
x = self.conv1(x)
|
793 |
+
x = nn.functional.relu_(x)
|
794 |
+
if self.caffe_maxpool:
|
795 |
+
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True)
|
796 |
+
else:
|
797 |
+
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1)
|
798 |
+
return x
|
799 |
+
|
800 |
+
@property
|
801 |
+
def out_channels(self):
|
802 |
+
return self.conv1.out_channels
|
803 |
+
|
804 |
+
@property
|
805 |
+
def stride(self):
|
806 |
+
return 4 # = stride 2 conv -> stride 2 max pool
|
807 |
+
|
808 |
+
|
809 |
+
class ResNetBlockBase(nn.Module):
|
810 |
+
def __init__(self, in_channels, out_channels, stride):
|
811 |
+
super().__init__()
|
812 |
+
self.in_channels = in_channels
|
813 |
+
self.out_channels = out_channels
|
814 |
+
self.stride = stride
|
815 |
+
|
816 |
+
def freeze(self):
|
817 |
+
for p in self.parameters():
|
818 |
+
p.requires_grad = False
|
819 |
+
return self
|
820 |
+
|
821 |
+
|
822 |
+
class BottleneckBlock(ResNetBlockBase):
|
823 |
+
def __init__(
|
824 |
+
self,
|
825 |
+
in_channels,
|
826 |
+
out_channels,
|
827 |
+
bottleneck_channels,
|
828 |
+
stride=1,
|
829 |
+
num_groups=1,
|
830 |
+
norm="BN",
|
831 |
+
stride_in_1x1=False,
|
832 |
+
dilation=1,
|
833 |
+
):
|
834 |
+
super().__init__(in_channels, out_channels, stride)
|
835 |
+
|
836 |
+
if in_channels != out_channels:
|
837 |
+
self.shortcut = Conv2d(
|
838 |
+
in_channels,
|
839 |
+
out_channels,
|
840 |
+
kernel_size=1,
|
841 |
+
stride=stride,
|
842 |
+
bias=False,
|
843 |
+
norm=get_norm(norm, out_channels),
|
844 |
+
)
|
845 |
+
else:
|
846 |
+
self.shortcut = None
|
847 |
+
|
848 |
+
# The original MSRA ResNet models have stride in the first 1x1 conv
|
849 |
+
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
|
850 |
+
# stride in the 3x3 conv
|
851 |
+
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
|
852 |
+
|
853 |
+
self.conv1 = Conv2d(
|
854 |
+
in_channels,
|
855 |
+
bottleneck_channels,
|
856 |
+
kernel_size=1,
|
857 |
+
stride=stride_1x1,
|
858 |
+
bias=False,
|
859 |
+
norm=get_norm(norm, bottleneck_channels),
|
860 |
+
)
|
861 |
+
|
862 |
+
self.conv2 = Conv2d(
|
863 |
+
bottleneck_channels,
|
864 |
+
bottleneck_channels,
|
865 |
+
kernel_size=3,
|
866 |
+
stride=stride_3x3,
|
867 |
+
padding=1 * dilation,
|
868 |
+
bias=False,
|
869 |
+
groups=num_groups,
|
870 |
+
dilation=dilation,
|
871 |
+
norm=get_norm(norm, bottleneck_channels),
|
872 |
+
)
|
873 |
+
|
874 |
+
self.conv3 = Conv2d(
|
875 |
+
bottleneck_channels,
|
876 |
+
out_channels,
|
877 |
+
kernel_size=1,
|
878 |
+
bias=False,
|
879 |
+
norm=get_norm(norm, out_channels),
|
880 |
+
)
|
881 |
+
|
882 |
+
def forward(self, x):
|
883 |
+
out = self.conv1(x)
|
884 |
+
out = nn.functional.relu_(out)
|
885 |
+
|
886 |
+
out = self.conv2(out)
|
887 |
+
out = nn.functional.relu_(out)
|
888 |
+
|
889 |
+
out = self.conv3(out)
|
890 |
+
|
891 |
+
if self.shortcut is not None:
|
892 |
+
shortcut = self.shortcut(x)
|
893 |
+
else:
|
894 |
+
shortcut = x
|
895 |
+
|
896 |
+
out += shortcut
|
897 |
+
out = nn.functional.relu_(out)
|
898 |
+
return out
|
899 |
+
|
900 |
+
|
901 |
+
class Backbone(nn.Module, metaclass=ABCMeta):
|
902 |
+
def __init__(self):
|
903 |
+
super().__init__()
|
904 |
+
|
905 |
+
@abstractmethod
|
906 |
+
def forward(self):
|
907 |
+
pass
|
908 |
+
|
909 |
+
@property
|
910 |
+
def size_divisibility(self):
|
911 |
+
"""
|
912 |
+
Some backbones require the input height and width to be divisible by a specific integer. This is
|
913 |
+
typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match
|
914 |
+
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required.
|
915 |
+
"""
|
916 |
+
return 0
|
917 |
+
|
918 |
+
def output_shape(self):
|
919 |
+
return {
|
920 |
+
name: ShapeSpec(
|
921 |
+
channels=self._out_feature_channels[name],
|
922 |
+
stride=self._out_feature_strides[name],
|
923 |
+
)
|
924 |
+
for name in self._out_features
|
925 |
+
}
|
926 |
+
|
927 |
+
@property
|
928 |
+
def out_features(self):
|
929 |
+
"""deprecated"""
|
930 |
+
return self._out_features
|
931 |
+
|
932 |
+
@property
|
933 |
+
def out_feature_strides(self):
|
934 |
+
"""deprecated"""
|
935 |
+
return {f: self._out_feature_strides[f] for f in self._out_features}
|
936 |
+
|
937 |
+
@property
|
938 |
+
def out_feature_channels(self):
|
939 |
+
"""deprecated"""
|
940 |
+
return {f: self._out_feature_channels[f] for f in self._out_features}
|
941 |
+
|
942 |
+
|
943 |
+
class ResNet(Backbone):
|
944 |
+
def __init__(self, stem, stages, num_classes=None, out_features=None):
|
945 |
+
"""
|
946 |
+
Args:
|
947 |
+
stem (nn.Module): a stem module
|
948 |
+
stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`.
|
949 |
+
num_classes (None or int): if None, will not perform classification.
|
950 |
+
out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in:
|
951 |
+
"stem", "linear", or "res2" ... If None, will return the output of the last layer.
|
952 |
+
"""
|
953 |
+
super(ResNet, self).__init__()
|
954 |
+
self.stem = stem
|
955 |
+
self.num_classes = num_classes
|
956 |
+
|
957 |
+
current_stride = self.stem.stride
|
958 |
+
self._out_feature_strides = {"stem": current_stride}
|
959 |
+
self._out_feature_channels = {"stem": self.stem.out_channels}
|
960 |
+
|
961 |
+
self.stages_and_names = []
|
962 |
+
for i, blocks in enumerate(stages):
|
963 |
+
for block in blocks:
|
964 |
+
assert isinstance(block, ResNetBlockBase), block
|
965 |
+
curr_channels = block.out_channels
|
966 |
+
stage = nn.Sequential(*blocks)
|
967 |
+
name = "res" + str(i + 2)
|
968 |
+
self.add_module(name, stage)
|
969 |
+
self.stages_and_names.append((stage, name))
|
970 |
+
self._out_feature_strides[name] = current_stride = int(
|
971 |
+
current_stride * np.prod([k.stride for k in blocks])
|
972 |
+
)
|
973 |
+
self._out_feature_channels[name] = blocks[-1].out_channels
|
974 |
+
|
975 |
+
if num_classes is not None:
|
976 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
977 |
+
self.linear = nn.Linear(curr_channels, num_classes)
|
978 |
+
|
979 |
+
# Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
|
980 |
+
# "The 1000-way fully-connected layer is initialized by
|
981 |
+
# drawing weights from a zero-mean Gaussian with std of 0.01."
|
982 |
+
nn.init.normal_(self.linear.weight, stddev=0.01)
|
983 |
+
name = "linear"
|
984 |
+
|
985 |
+
if out_features is None:
|
986 |
+
out_features = [name]
|
987 |
+
self._out_features = out_features
|
988 |
+
assert len(self._out_features)
|
989 |
+
children = [x[0] for x in self.named_children()]
|
990 |
+
for out_feature in self._out_features:
|
991 |
+
assert out_feature in children, "Available children: {}".format(", ".join(children))
|
992 |
+
|
993 |
+
def forward(self, x):
|
994 |
+
outputs = {}
|
995 |
+
x = self.stem(x)
|
996 |
+
if "stem" in self._out_features:
|
997 |
+
outputs["stem"] = x
|
998 |
+
for stage, name in self.stages_and_names:
|
999 |
+
x = stage(x)
|
1000 |
+
if name in self._out_features:
|
1001 |
+
outputs[name] = x
|
1002 |
+
if self.num_classes is not None:
|
1003 |
+
x = self.avgpool(x)
|
1004 |
+
x = self.linear(x)
|
1005 |
+
if "linear" in self._out_features:
|
1006 |
+
outputs["linear"] = x
|
1007 |
+
return outputs
|
1008 |
+
|
1009 |
+
def output_shape(self):
|
1010 |
+
return {
|
1011 |
+
name: ShapeSpec(
|
1012 |
+
channels=self._out_feature_channels[name],
|
1013 |
+
stride=self._out_feature_strides[name],
|
1014 |
+
)
|
1015 |
+
for name in self._out_features
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
@staticmethod
|
1019 |
+
def make_stage(
|
1020 |
+
block_class,
|
1021 |
+
num_blocks,
|
1022 |
+
first_stride=None,
|
1023 |
+
*,
|
1024 |
+
in_channels,
|
1025 |
+
out_channels,
|
1026 |
+
**kwargs,
|
1027 |
+
):
|
1028 |
+
"""
|
1029 |
+
Usually, layers that produce the same feature map spatial size
|
1030 |
+
are defined as one "stage".
|
1031 |
+
Under such definition, stride_per_block[1:] should all be 1.
|
1032 |
+
"""
|
1033 |
+
if first_stride is not None:
|
1034 |
+
assert "stride" not in kwargs and "stride_per_block" not in kwargs
|
1035 |
+
kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1)
|
1036 |
+
blocks = []
|
1037 |
+
for i in range(num_blocks):
|
1038 |
+
curr_kwargs = {}
|
1039 |
+
for k, v in kwargs.items():
|
1040 |
+
if k.endswith("_per_block"):
|
1041 |
+
assert len(v) == num_blocks, (
|
1042 |
+
f"Argument '{k}' of make_stage should have the " f"same length as num_blocks={num_blocks}."
|
1043 |
+
)
|
1044 |
+
newk = k[: -len("_per_block")]
|
1045 |
+
assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
|
1046 |
+
curr_kwargs[newk] = v[i]
|
1047 |
+
else:
|
1048 |
+
curr_kwargs[k] = v
|
1049 |
+
|
1050 |
+
blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs))
|
1051 |
+
in_channels = out_channels
|
1052 |
+
|
1053 |
+
return blocks
|
1054 |
+
|
1055 |
+
|
1056 |
+
class ROIPooler(nn.Module):
|
1057 |
+
"""
|
1058 |
+
Region of interest feature map pooler that supports pooling from one or more
|
1059 |
+
feature maps.
|
1060 |
+
"""
|
1061 |
+
|
1062 |
+
def __init__(
|
1063 |
+
self,
|
1064 |
+
output_size,
|
1065 |
+
scales,
|
1066 |
+
sampling_ratio,
|
1067 |
+
canonical_box_size=224,
|
1068 |
+
canonical_level=4,
|
1069 |
+
):
|
1070 |
+
super().__init__()
|
1071 |
+
# assumption that stride is a power of 2.
|
1072 |
+
min_level = -math.log2(scales[0])
|
1073 |
+
max_level = -math.log2(scales[-1])
|
1074 |
+
|
1075 |
+
# a bunch of testing
|
1076 |
+
assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
|
1077 |
+
assert len(scales) == max_level - min_level + 1, "not pyramid"
|
1078 |
+
assert 0 < min_level and min_level <= max_level
|
1079 |
+
if isinstance(output_size, int):
|
1080 |
+
output_size = (output_size, output_size)
|
1081 |
+
assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
|
1082 |
+
if len(scales) > 1:
|
1083 |
+
assert min_level <= canonical_level and canonical_level <= max_level
|
1084 |
+
assert canonical_box_size > 0
|
1085 |
+
|
1086 |
+
self.output_size = output_size
|
1087 |
+
self.min_level = int(min_level)
|
1088 |
+
self.max_level = int(max_level)
|
1089 |
+
self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales)
|
1090 |
+
self.canonical_level = canonical_level
|
1091 |
+
self.canonical_box_size = canonical_box_size
|
1092 |
+
|
1093 |
+
def forward(self, feature_maps, boxes):
|
1094 |
+
"""
|
1095 |
+
Args:
|
1096 |
+
feature_maps: List[torch.Tensor(N,C,W,H)]
|
1097 |
+
box_lists: list[torch.Tensor])
|
1098 |
+
Returns:
|
1099 |
+
A tensor of shape(N*B, Channels, output_size, output_size)
|
1100 |
+
"""
|
1101 |
+
x = [v for v in feature_maps.values()]
|
1102 |
+
num_level_assignments = len(self.level_poolers)
|
1103 |
+
assert len(x) == num_level_assignments and len(boxes) == x[0].size(0)
|
1104 |
+
|
1105 |
+
pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes)
|
1106 |
+
|
1107 |
+
if num_level_assignments == 1:
|
1108 |
+
return self.level_poolers[0](x[0], pooler_fmt_boxes)
|
1109 |
+
|
1110 |
+
level_assignments = assign_boxes_to_levels(
|
1111 |
+
boxes,
|
1112 |
+
self.min_level,
|
1113 |
+
self.max_level,
|
1114 |
+
self.canonical_box_size,
|
1115 |
+
self.canonical_level,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
num_boxes = len(pooler_fmt_boxes)
|
1119 |
+
num_channels = x[0].shape[1]
|
1120 |
+
output_size = self.output_size[0]
|
1121 |
+
|
1122 |
+
dtype, device = x[0].dtype, x[0].device
|
1123 |
+
output = torch.zeros(
|
1124 |
+
(num_boxes, num_channels, output_size, output_size),
|
1125 |
+
dtype=dtype,
|
1126 |
+
device=device,
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
|
1130 |
+
inds = torch.nonzero(level_assignments == level).squeeze(1)
|
1131 |
+
pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
|
1132 |
+
output[inds] = pooler(x_level, pooler_fmt_boxes_level)
|
1133 |
+
|
1134 |
+
return output
|
1135 |
+
|
1136 |
+
|
1137 |
+
class ROIOutputs(object):
|
1138 |
+
def __init__(self, cfg, training=False):
|
1139 |
+
self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA
|
1140 |
+
self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)
|
1141 |
+
self.training = training
|
1142 |
+
self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST
|
1143 |
+
self.min_detections = cfg.MIN_DETECTIONS
|
1144 |
+
self.max_detections = cfg.MAX_DETECTIONS
|
1145 |
+
|
1146 |
+
nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST
|
1147 |
+
if not isinstance(nms_thresh, list):
|
1148 |
+
nms_thresh = [nms_thresh]
|
1149 |
+
self.nms_thresh = nms_thresh
|
1150 |
+
|
1151 |
+
def _predict_boxes(self, proposals, box_deltas, preds_per_image):
|
1152 |
+
num_pred = box_deltas.size(0)
|
1153 |
+
B = proposals[0].size(-1)
|
1154 |
+
K = box_deltas.size(-1) // B
|
1155 |
+
box_deltas = box_deltas.view(num_pred * K, B)
|
1156 |
+
proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B)
|
1157 |
+
proposals = proposals.reshape(-1, B)
|
1158 |
+
boxes = self.box2box_transform.apply_deltas(box_deltas, proposals)
|
1159 |
+
return boxes.view(num_pred, K * B).split(preds_per_image, dim=0)
|
1160 |
+
|
1161 |
+
def _predict_objs(self, obj_logits, preds_per_image):
|
1162 |
+
probs = nn.functional.softmax(obj_logits, dim=-1)
|
1163 |
+
probs = probs.split(preds_per_image, dim=0)
|
1164 |
+
return probs
|
1165 |
+
|
1166 |
+
def _predict_attrs(self, attr_logits, preds_per_image):
|
1167 |
+
attr_logits = attr_logits[..., :-1].softmax(-1)
|
1168 |
+
attr_probs, attrs = attr_logits.max(-1)
|
1169 |
+
return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0)
|
1170 |
+
|
1171 |
+
@torch.no_grad()
|
1172 |
+
def inference(
|
1173 |
+
self,
|
1174 |
+
obj_logits,
|
1175 |
+
attr_logits,
|
1176 |
+
box_deltas,
|
1177 |
+
pred_boxes,
|
1178 |
+
features,
|
1179 |
+
sizes,
|
1180 |
+
scales=None,
|
1181 |
+
):
|
1182 |
+
# only the pred boxes is the
|
1183 |
+
preds_per_image = [p.size(0) for p in pred_boxes]
|
1184 |
+
boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image)
|
1185 |
+
obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N
|
1186 |
+
attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image)
|
1187 |
+
features = features.split(preds_per_image, dim=0)
|
1188 |
+
|
1189 |
+
# fun for each image too, also I can experiment and do multiple images
|
1190 |
+
final_results = []
|
1191 |
+
zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes)
|
1192 |
+
for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped):
|
1193 |
+
for nms_t in self.nms_thresh:
|
1194 |
+
outputs = do_nms(
|
1195 |
+
boxes,
|
1196 |
+
obj_scores,
|
1197 |
+
size,
|
1198 |
+
self.score_thresh,
|
1199 |
+
nms_t,
|
1200 |
+
self.min_detections,
|
1201 |
+
self.max_detections,
|
1202 |
+
)
|
1203 |
+
if outputs is not None:
|
1204 |
+
max_boxes, max_scores, classes, ids = outputs
|
1205 |
+
break
|
1206 |
+
|
1207 |
+
if scales is not None:
|
1208 |
+
scale_yx = scales[i]
|
1209 |
+
max_boxes[:, 0::2] *= scale_yx[1]
|
1210 |
+
max_boxes[:, 1::2] *= scale_yx[0]
|
1211 |
+
|
1212 |
+
final_results.append(
|
1213 |
+
(
|
1214 |
+
max_boxes,
|
1215 |
+
classes,
|
1216 |
+
max_scores,
|
1217 |
+
attrs[ids],
|
1218 |
+
attr_probs[ids],
|
1219 |
+
features[i][ids],
|
1220 |
+
)
|
1221 |
+
)
|
1222 |
+
boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results))
|
1223 |
+
return boxes, classes, class_probs, attrs, attr_probs, roi_features
|
1224 |
+
|
1225 |
+
def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes):
|
1226 |
+
pass
|
1227 |
+
|
1228 |
+
def __call__(
|
1229 |
+
self,
|
1230 |
+
obj_logits,
|
1231 |
+
attr_logits,
|
1232 |
+
box_deltas,
|
1233 |
+
pred_boxes,
|
1234 |
+
features,
|
1235 |
+
sizes,
|
1236 |
+
scales=None,
|
1237 |
+
):
|
1238 |
+
if self.training:
|
1239 |
+
raise NotImplementedError()
|
1240 |
+
return self.inference(
|
1241 |
+
obj_logits,
|
1242 |
+
attr_logits,
|
1243 |
+
box_deltas,
|
1244 |
+
pred_boxes,
|
1245 |
+
features,
|
1246 |
+
sizes,
|
1247 |
+
scales=scales,
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
|
1251 |
+
class Res5ROIHeads(nn.Module):
|
1252 |
+
"""
|
1253 |
+
ROIHeads perform all per-region computation in an R-CNN.
|
1254 |
+
It contains logic of cropping the regions, extract per-region features
|
1255 |
+
(by the res-5 block in this case), and make per-region predictions.
|
1256 |
+
"""
|
1257 |
+
|
1258 |
+
def __init__(self, cfg, input_shape):
|
1259 |
+
super().__init__()
|
1260 |
+
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
|
1261 |
+
self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION
|
1262 |
+
self.in_features = cfg.ROI_HEADS.IN_FEATURES
|
1263 |
+
self.num_classes = cfg.ROI_HEADS.NUM_CLASSES
|
1264 |
+
self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT
|
1265 |
+
self.feature_strides = {k: v.stride for k, v in input_shape.items()}
|
1266 |
+
self.feature_channels = {k: v.channels for k, v in input_shape.items()}
|
1267 |
+
self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG
|
1268 |
+
self.stage_channel_factor = 2 ** 3 # res5 is 8x res2
|
1269 |
+
self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor
|
1270 |
+
|
1271 |
+
# self.proposal_matcher = Matcher(
|
1272 |
+
# cfg.ROI_HEADS.IOU_THRESHOLDS,
|
1273 |
+
# cfg.ROI_HEADS.IOU_LABELS,
|
1274 |
+
# allow_low_quality_matches=False,
|
1275 |
+
# )
|
1276 |
+
|
1277 |
+
pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION
|
1278 |
+
pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],)
|
1279 |
+
sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
|
1280 |
+
res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE
|
1281 |
+
use_attr = cfg.ROI_BOX_HEAD.ATTR
|
1282 |
+
num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS
|
1283 |
+
|
1284 |
+
self.pooler = ROIPooler(
|
1285 |
+
output_size=pooler_resolution,
|
1286 |
+
scales=pooler_scales,
|
1287 |
+
sampling_ratio=sampling_ratio,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
self.res5 = self._build_res5_block(cfg)
|
1291 |
+
if not res5_halve:
|
1292 |
+
"""
|
1293 |
+
Modifications for VG in RoI heads:
|
1294 |
+
1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1
|
1295 |
+
2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2)
|
1296 |
+
"""
|
1297 |
+
self.res5[0].conv1.stride = (1, 1)
|
1298 |
+
self.res5[0].shortcut.stride = (1, 1)
|
1299 |
+
for i in range(3):
|
1300 |
+
self.res5[i].conv2.padding = (2, 2)
|
1301 |
+
self.res5[i].conv2.dilation = (2, 2)
|
1302 |
+
|
1303 |
+
self.box_predictor = FastRCNNOutputLayers(
|
1304 |
+
self.out_channels,
|
1305 |
+
self.num_classes,
|
1306 |
+
self.cls_agnostic_bbox_reg,
|
1307 |
+
use_attr=use_attr,
|
1308 |
+
num_attrs=num_attrs,
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
def _build_res5_block(self, cfg):
|
1312 |
+
stage_channel_factor = self.stage_channel_factor # res5 is 8x res2
|
1313 |
+
num_groups = cfg.RESNETS.NUM_GROUPS
|
1314 |
+
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
|
1315 |
+
bottleneck_channels = num_groups * width_per_group * stage_channel_factor
|
1316 |
+
out_channels = self.out_channels
|
1317 |
+
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
|
1318 |
+
norm = cfg.RESNETS.NORM
|
1319 |
+
|
1320 |
+
blocks = ResNet.make_stage(
|
1321 |
+
BottleneckBlock,
|
1322 |
+
3,
|
1323 |
+
first_stride=2,
|
1324 |
+
in_channels=out_channels // 2,
|
1325 |
+
bottleneck_channels=bottleneck_channels,
|
1326 |
+
out_channels=out_channels,
|
1327 |
+
num_groups=num_groups,
|
1328 |
+
norm=norm,
|
1329 |
+
stride_in_1x1=stride_in_1x1,
|
1330 |
+
)
|
1331 |
+
return nn.Sequential(*blocks)
|
1332 |
+
|
1333 |
+
def _shared_roi_transform(self, features, boxes):
|
1334 |
+
x = self.pooler(features, boxes)
|
1335 |
+
return self.res5(x)
|
1336 |
+
|
1337 |
+
def forward(self, features, proposal_boxes, gt_boxes=None):
|
1338 |
+
if self.training:
|
1339 |
+
"""
|
1340 |
+
see https://github.com/airsplay/py-bottom-up-attention/\
|
1341 |
+
blob/master/detectron2/modeling/roi_heads/roi_heads.py
|
1342 |
+
"""
|
1343 |
+
raise NotImplementedError()
|
1344 |
+
|
1345 |
+
assert not proposal_boxes[0].requires_grad
|
1346 |
+
box_features = self._shared_roi_transform(features, proposal_boxes)
|
1347 |
+
feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1
|
1348 |
+
obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled)
|
1349 |
+
return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled
|
1350 |
+
|
1351 |
+
|
1352 |
+
class AnchorGenerator(nn.Module):
|
1353 |
+
"""
|
1354 |
+
For a set of image sizes and feature maps, computes a set of anchors.
|
1355 |
+
"""
|
1356 |
+
|
1357 |
+
def __init__(self, cfg, input_shape: List[ShapeSpec]):
|
1358 |
+
super().__init__()
|
1359 |
+
sizes = cfg.ANCHOR_GENERATOR.SIZES
|
1360 |
+
aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS
|
1361 |
+
self.strides = [x.stride for x in input_shape]
|
1362 |
+
self.offset = cfg.ANCHOR_GENERATOR.OFFSET
|
1363 |
+
assert 0.0 <= self.offset < 1.0, self.offset
|
1364 |
+
|
1365 |
+
"""
|
1366 |
+
sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i
|
1367 |
+
1. given in absolute lengths in units of the input image;
|
1368 |
+
2. they do not dynamically scale if the input image size changes.
|
1369 |
+
aspect_ratios (list[list[float]])
|
1370 |
+
strides (list[int]): stride of each input feature.
|
1371 |
+
"""
|
1372 |
+
|
1373 |
+
self.num_features = len(self.strides)
|
1374 |
+
self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios))
|
1375 |
+
self._spacial_feat_dim = 4
|
1376 |
+
|
1377 |
+
def _calculate_anchors(self, sizes, aspect_ratios):
|
1378 |
+
# If one size (or aspect ratio) is specified and there are multiple feature
|
1379 |
+
# maps, then we "broadcast" anchors of that single size (or aspect ratio)
|
1380 |
+
if len(sizes) == 1:
|
1381 |
+
sizes *= self.num_features
|
1382 |
+
if len(aspect_ratios) == 1:
|
1383 |
+
aspect_ratios *= self.num_features
|
1384 |
+
assert self.num_features == len(sizes)
|
1385 |
+
assert self.num_features == len(aspect_ratios)
|
1386 |
+
|
1387 |
+
cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)]
|
1388 |
+
|
1389 |
+
return cell_anchors
|
1390 |
+
|
1391 |
+
@property
|
1392 |
+
def box_dim(self):
|
1393 |
+
return self._spacial_feat_dim
|
1394 |
+
|
1395 |
+
@property
|
1396 |
+
def num_cell_anchors(self):
|
1397 |
+
"""
|
1398 |
+
Returns:
|
1399 |
+
list[int]: Each int is the number of anchors at every pixel location, on that feature map.
|
1400 |
+
"""
|
1401 |
+
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
|
1402 |
+
|
1403 |
+
def grid_anchors(self, grid_sizes):
|
1404 |
+
anchors = []
|
1405 |
+
for (size, stride, base_anchors) in zip(grid_sizes, self.strides, self.cell_anchors):
|
1406 |
+
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device)
|
1407 |
+
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
|
1408 |
+
|
1409 |
+
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
|
1410 |
+
|
1411 |
+
return anchors
|
1412 |
+
|
1413 |
+
def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
|
1414 |
+
"""
|
1415 |
+
anchors are continuous geometric rectangles
|
1416 |
+
centered on one feature map point sample.
|
1417 |
+
We can later build the set of anchors
|
1418 |
+
for the entire feature map by tiling these tensors
|
1419 |
+
"""
|
1420 |
+
|
1421 |
+
anchors = []
|
1422 |
+
for size in sizes:
|
1423 |
+
area = size ** 2.0
|
1424 |
+
for aspect_ratio in aspect_ratios:
|
1425 |
+
w = math.sqrt(area / aspect_ratio)
|
1426 |
+
h = aspect_ratio * w
|
1427 |
+
x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
|
1428 |
+
anchors.append([x0, y0, x1, y1])
|
1429 |
+
return nn.Parameter(torch.tensor(anchors))
|
1430 |
+
|
1431 |
+
def forward(self, features):
|
1432 |
+
"""
|
1433 |
+
Args:
|
1434 |
+
features List[torch.Tensor]: list of feature maps on which to generate anchors.
|
1435 |
+
Returns:
|
1436 |
+
torch.Tensor: a list of #image elements.
|
1437 |
+
"""
|
1438 |
+
num_images = features[0].size(0)
|
1439 |
+
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
|
1440 |
+
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
|
1441 |
+
anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps)
|
1442 |
+
return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0)
|
1443 |
+
|
1444 |
+
|
1445 |
+
class RPNHead(nn.Module):
|
1446 |
+
"""
|
1447 |
+
RPN classification and regression heads. Uses a 3x3 conv to produce a shared
|
1448 |
+
hidden state from which one 1x1 conv predicts objectness logits for each anchor
|
1449 |
+
and a second 1x1 conv predicts bounding-box deltas specifying how to deform
|
1450 |
+
each anchor into an object proposal.
|
1451 |
+
"""
|
1452 |
+
|
1453 |
+
def __init__(self, cfg, input_shape: List[ShapeSpec]):
|
1454 |
+
super().__init__()
|
1455 |
+
|
1456 |
+
# Standard RPN is shared across levels:
|
1457 |
+
in_channels = [s.channels for s in input_shape]
|
1458 |
+
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
|
1459 |
+
in_channels = in_channels[0]
|
1460 |
+
|
1461 |
+
anchor_generator = AnchorGenerator(cfg, input_shape)
|
1462 |
+
num_cell_anchors = anchor_generator.num_cell_anchors
|
1463 |
+
box_dim = anchor_generator.box_dim
|
1464 |
+
assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors"
|
1465 |
+
num_cell_anchors = num_cell_anchors[0]
|
1466 |
+
|
1467 |
+
if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1:
|
1468 |
+
hid_channels = in_channels
|
1469 |
+
else:
|
1470 |
+
hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS
|
1471 |
+
# Modifications for VG in RPN (modeling/proposal_generator/rpn.py)
|
1472 |
+
# Use hidden dim instead fo the same dim as Res4 (in_channels)
|
1473 |
+
|
1474 |
+
# 3x3 conv for the hidden representation
|
1475 |
+
self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1)
|
1476 |
+
# 1x1 conv for predicting objectness logits
|
1477 |
+
self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1)
|
1478 |
+
# 1x1 conv for predicting box2box transform deltas
|
1479 |
+
self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1)
|
1480 |
+
|
1481 |
+
for layer in [self.conv, self.objectness_logits, self.anchor_deltas]:
|
1482 |
+
nn.init.normal_(layer.weight, std=0.01)
|
1483 |
+
nn.init.constant_(layer.bias, 0)
|
1484 |
+
|
1485 |
+
def forward(self, features):
|
1486 |
+
"""
|
1487 |
+
Args:
|
1488 |
+
features (list[Tensor]): list of feature maps
|
1489 |
+
"""
|
1490 |
+
pred_objectness_logits = []
|
1491 |
+
pred_anchor_deltas = []
|
1492 |
+
for x in features:
|
1493 |
+
t = nn.functional.relu(self.conv(x))
|
1494 |
+
pred_objectness_logits.append(self.objectness_logits(t))
|
1495 |
+
pred_anchor_deltas.append(self.anchor_deltas(t))
|
1496 |
+
return pred_objectness_logits, pred_anchor_deltas
|
1497 |
+
|
1498 |
+
|
1499 |
+
class RPN(nn.Module):
|
1500 |
+
"""
|
1501 |
+
Region Proposal Network, introduced by the Faster R-CNN paper.
|
1502 |
+
"""
|
1503 |
+
|
1504 |
+
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
|
1505 |
+
super().__init__()
|
1506 |
+
|
1507 |
+
self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE
|
1508 |
+
self.in_features = cfg.RPN.IN_FEATURES
|
1509 |
+
self.nms_thresh = cfg.RPN.NMS_THRESH
|
1510 |
+
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
|
1511 |
+
self.positive_fraction = cfg.RPN.POSITIVE_FRACTION
|
1512 |
+
self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA
|
1513 |
+
self.loss_weight = cfg.RPN.LOSS_WEIGHT
|
1514 |
+
|
1515 |
+
self.pre_nms_topk = {
|
1516 |
+
True: cfg.RPN.PRE_NMS_TOPK_TRAIN,
|
1517 |
+
False: cfg.RPN.PRE_NMS_TOPK_TEST,
|
1518 |
+
}
|
1519 |
+
self.post_nms_topk = {
|
1520 |
+
True: cfg.RPN.POST_NMS_TOPK_TRAIN,
|
1521 |
+
False: cfg.RPN.POST_NMS_TOPK_TEST,
|
1522 |
+
}
|
1523 |
+
self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH
|
1524 |
+
|
1525 |
+
self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features])
|
1526 |
+
self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS)
|
1527 |
+
self.anchor_matcher = Matcher(
|
1528 |
+
cfg.RPN.IOU_THRESHOLDS,
|
1529 |
+
cfg.RPN.IOU_LABELS,
|
1530 |
+
allow_low_quality_matches=True,
|
1531 |
+
)
|
1532 |
+
self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features])
|
1533 |
+
|
1534 |
+
def training(self, images, image_shapes, features, gt_boxes):
|
1535 |
+
pass
|
1536 |
+
|
1537 |
+
def inference(self, outputs, images, image_shapes, features, gt_boxes=None):
|
1538 |
+
outputs = find_top_rpn_proposals(
|
1539 |
+
outputs.predict_proposals(),
|
1540 |
+
outputs.predict_objectness_logits(),
|
1541 |
+
images,
|
1542 |
+
image_shapes,
|
1543 |
+
self.nms_thresh,
|
1544 |
+
self.pre_nms_topk[self.training],
|
1545 |
+
self.post_nms_topk[self.training],
|
1546 |
+
self.min_box_side_len,
|
1547 |
+
self.training,
|
1548 |
+
)
|
1549 |
+
|
1550 |
+
results = []
|
1551 |
+
for img in outputs:
|
1552 |
+
im_boxes, img_box_logits = img
|
1553 |
+
img_box_logits, inds = img_box_logits.sort(descending=True)
|
1554 |
+
im_boxes = im_boxes[inds]
|
1555 |
+
results.append((im_boxes, img_box_logits))
|
1556 |
+
|
1557 |
+
(proposal_boxes, logits) = tuple(map(list, zip(*results)))
|
1558 |
+
return proposal_boxes, logits
|
1559 |
+
|
1560 |
+
def forward(self, images, image_shapes, features, gt_boxes=None):
|
1561 |
+
"""
|
1562 |
+
Args:
|
1563 |
+
images (torch.Tensor): input images of length `N`
|
1564 |
+
features (dict[str: Tensor])
|
1565 |
+
gt_instances
|
1566 |
+
"""
|
1567 |
+
# features is dict, key = block level, v = feature_map
|
1568 |
+
features = [features[f] for f in self.in_features]
|
1569 |
+
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
|
1570 |
+
anchors = self.anchor_generator(features)
|
1571 |
+
outputs = RPNOutputs(
|
1572 |
+
self.box2box_transform,
|
1573 |
+
self.anchor_matcher,
|
1574 |
+
self.batch_size_per_image,
|
1575 |
+
self.positive_fraction,
|
1576 |
+
images,
|
1577 |
+
pred_objectness_logits,
|
1578 |
+
pred_anchor_deltas,
|
1579 |
+
anchors,
|
1580 |
+
self.boundary_threshold,
|
1581 |
+
gt_boxes,
|
1582 |
+
self.smooth_l1_beta,
|
1583 |
+
)
|
1584 |
+
# For RPN-only models, the proposals are the final output
|
1585 |
+
|
1586 |
+
if self.training:
|
1587 |
+
raise NotImplementedError()
|
1588 |
+
return self.training(outputs, images, image_shapes, features, gt_boxes)
|
1589 |
+
else:
|
1590 |
+
return self.inference(outputs, images, image_shapes, features, gt_boxes)
|
1591 |
+
|
1592 |
+
|
1593 |
+
class FastRCNNOutputLayers(nn.Module):
|
1594 |
+
"""
|
1595 |
+
Two linear layers for predicting Fast R-CNN outputs:
|
1596 |
+
(1) proposal-to-detection box regression deltas
|
1597 |
+
(2) classification scores
|
1598 |
+
"""
|
1599 |
+
|
1600 |
+
def __init__(
|
1601 |
+
self,
|
1602 |
+
input_size,
|
1603 |
+
num_classes,
|
1604 |
+
cls_agnostic_bbox_reg,
|
1605 |
+
box_dim=4,
|
1606 |
+
use_attr=False,
|
1607 |
+
num_attrs=-1,
|
1608 |
+
):
|
1609 |
+
"""
|
1610 |
+
Args:
|
1611 |
+
input_size (int): channels, or (channels, height, width)
|
1612 |
+
num_classes (int)
|
1613 |
+
cls_agnostic_bbox_reg (bool)
|
1614 |
+
box_dim (int)
|
1615 |
+
"""
|
1616 |
+
super().__init__()
|
1617 |
+
|
1618 |
+
if not isinstance(input_size, int):
|
1619 |
+
input_size = np.prod(input_size)
|
1620 |
+
|
1621 |
+
# (do + 1 for background class)
|
1622 |
+
self.cls_score = nn.Linear(input_size, num_classes + 1)
|
1623 |
+
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
|
1624 |
+
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
|
1625 |
+
|
1626 |
+
self.use_attr = use_attr
|
1627 |
+
if use_attr:
|
1628 |
+
"""
|
1629 |
+
Modifications for VG in RoI heads
|
1630 |
+
Embedding: {num_classes + 1} --> {input_size // 8}
|
1631 |
+
Linear: {input_size + input_size // 8} --> {input_size // 4}
|
1632 |
+
Linear: {input_size // 4} --> {num_attrs + 1}
|
1633 |
+
"""
|
1634 |
+
self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8)
|
1635 |
+
self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4)
|
1636 |
+
self.attr_score = nn.Linear(input_size // 4, num_attrs + 1)
|
1637 |
+
|
1638 |
+
nn.init.normal_(self.cls_score.weight, std=0.01)
|
1639 |
+
nn.init.normal_(self.bbox_pred.weight, std=0.001)
|
1640 |
+
for item in [self.cls_score, self.bbox_pred]:
|
1641 |
+
nn.init.constant_(item.bias, 0)
|
1642 |
+
|
1643 |
+
def forward(self, roi_features):
|
1644 |
+
if roi_features.dim() > 2:
|
1645 |
+
roi_features = torch.flatten(roi_features, start_dim=1)
|
1646 |
+
scores = self.cls_score(roi_features)
|
1647 |
+
proposal_deltas = self.bbox_pred(roi_features)
|
1648 |
+
if self.use_attr:
|
1649 |
+
_, max_class = scores.max(-1) # [b, c] --> [b]
|
1650 |
+
cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256]
|
1651 |
+
roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304]
|
1652 |
+
roi_features = self.fc_attr(roi_features)
|
1653 |
+
roi_features = nn.functional.relu(roi_features)
|
1654 |
+
attr_scores = self.attr_score(roi_features)
|
1655 |
+
return scores, attr_scores, proposal_deltas
|
1656 |
+
else:
|
1657 |
+
return scores, proposal_deltas
|
1658 |
+
|
1659 |
+
|
1660 |
+
class GeneralizedRCNN(nn.Module):
|
1661 |
+
def __init__(self, cfg):
|
1662 |
+
super().__init__()
|
1663 |
+
|
1664 |
+
self.backbone = build_backbone(cfg)
|
1665 |
+
self.proposal_generator = RPN(cfg, self.backbone.output_shape())
|
1666 |
+
self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape())
|
1667 |
+
self.roi_outputs = ROIOutputs(cfg)
|
1668 |
+
|
1669 |
+
@classmethod
|
1670 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
1671 |
+
config = kwargs.pop("config", None)
|
1672 |
+
state_dict = kwargs.pop("state_dict", None)
|
1673 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
1674 |
+
from_tf = kwargs.pop("from_tf", False)
|
1675 |
+
force_download = kwargs.pop("force_download", False)
|
1676 |
+
resume_download = kwargs.pop("resume_download", False)
|
1677 |
+
proxies = kwargs.pop("proxies", None)
|
1678 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
1679 |
+
use_cdn = kwargs.pop("use_cdn", True)
|
1680 |
+
|
1681 |
+
# Load config if we don't provide a configuration
|
1682 |
+
if not isinstance(config, Config):
|
1683 |
+
config_path = config if config is not None else pretrained_model_name_or_path
|
1684 |
+
# try:
|
1685 |
+
config = Config.from_pretrained(
|
1686 |
+
config_path,
|
1687 |
+
cache_dir=cache_dir,
|
1688 |
+
force_download=force_download,
|
1689 |
+
resume_download=resume_download,
|
1690 |
+
proxies=proxies,
|
1691 |
+
local_files_only=local_files_only,
|
1692 |
+
)
|
1693 |
+
|
1694 |
+
# Load model
|
1695 |
+
if pretrained_model_name_or_path is not None:
|
1696 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
1697 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
|
1698 |
+
# Load from a PyTorch checkpoint
|
1699 |
+
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
1700 |
+
else:
|
1701 |
+
raise EnvironmentError(
|
1702 |
+
"Error no file named {} found in directory {} ".format(
|
1703 |
+
WEIGHTS_NAME,
|
1704 |
+
pretrained_model_name_or_path,
|
1705 |
+
)
|
1706 |
+
)
|
1707 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
1708 |
+
archive_file = pretrained_model_name_or_path
|
1709 |
+
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
|
1710 |
+
assert (
|
1711 |
+
from_tf
|
1712 |
+
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
|
1713 |
+
pretrained_model_name_or_path + ".index"
|
1714 |
+
)
|
1715 |
+
archive_file = pretrained_model_name_or_path + ".index"
|
1716 |
+
else:
|
1717 |
+
archive_file = hf_bucket_url(
|
1718 |
+
pretrained_model_name_or_path,
|
1719 |
+
filename=WEIGHTS_NAME,
|
1720 |
+
use_cdn=use_cdn,
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
try:
|
1724 |
+
# Load from URL or cache if already cached
|
1725 |
+
resolved_archive_file = cached_path(
|
1726 |
+
archive_file,
|
1727 |
+
cache_dir=cache_dir,
|
1728 |
+
force_download=force_download,
|
1729 |
+
proxies=proxies,
|
1730 |
+
resume_download=resume_download,
|
1731 |
+
local_files_only=local_files_only,
|
1732 |
+
)
|
1733 |
+
if resolved_archive_file is None:
|
1734 |
+
raise EnvironmentError
|
1735 |
+
except EnvironmentError:
|
1736 |
+
msg = f"Can't load weights for '{pretrained_model_name_or_path}'."
|
1737 |
+
raise EnvironmentError(msg)
|
1738 |
+
|
1739 |
+
if resolved_archive_file == archive_file:
|
1740 |
+
print("loading weights file {}".format(archive_file))
|
1741 |
+
else:
|
1742 |
+
print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
|
1743 |
+
else:
|
1744 |
+
resolved_archive_file = None
|
1745 |
+
|
1746 |
+
# Instantiate model.
|
1747 |
+
model = cls(config)
|
1748 |
+
|
1749 |
+
if state_dict is None:
|
1750 |
+
try:
|
1751 |
+
try:
|
1752 |
+
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
1753 |
+
except Exception:
|
1754 |
+
state_dict = load_checkpoint(resolved_archive_file)
|
1755 |
+
|
1756 |
+
except Exception:
|
1757 |
+
raise OSError(
|
1758 |
+
"Unable to load weights from pytorch checkpoint file. "
|
1759 |
+
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
|
1760 |
+
)
|
1761 |
+
|
1762 |
+
missing_keys = []
|
1763 |
+
unexpected_keys = []
|
1764 |
+
error_msgs = []
|
1765 |
+
|
1766 |
+
# Convert old format to new format if needed from a PyTorch state_dict
|
1767 |
+
old_keys = []
|
1768 |
+
new_keys = []
|
1769 |
+
for key in state_dict.keys():
|
1770 |
+
new_key = None
|
1771 |
+
if "gamma" in key:
|
1772 |
+
new_key = key.replace("gamma", "weight")
|
1773 |
+
if "beta" in key:
|
1774 |
+
new_key = key.replace("beta", "bias")
|
1775 |
+
if new_key:
|
1776 |
+
old_keys.append(key)
|
1777 |
+
new_keys.append(new_key)
|
1778 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
1779 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
1780 |
+
|
1781 |
+
# copy state_dict so _load_from_state_dict can modify it
|
1782 |
+
metadata = getattr(state_dict, "_metadata", None)
|
1783 |
+
state_dict = state_dict.copy()
|
1784 |
+
if metadata is not None:
|
1785 |
+
state_dict._metadata = metadata
|
1786 |
+
|
1787 |
+
model_to_load = model
|
1788 |
+
model_to_load.load_state_dict(state_dict)
|
1789 |
+
|
1790 |
+
if model.__class__.__name__ != model_to_load.__class__.__name__:
|
1791 |
+
base_model_state_dict = model_to_load.state_dict().keys()
|
1792 |
+
head_model_state_dict_without_base_prefix = [
|
1793 |
+
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
|
1794 |
+
]
|
1795 |
+
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
|
1796 |
+
|
1797 |
+
if len(unexpected_keys) > 0:
|
1798 |
+
print(
|
1799 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
1800 |
+
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
1801 |
+
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
1802 |
+
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
1803 |
+
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
1804 |
+
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
1805 |
+
)
|
1806 |
+
else:
|
1807 |
+
print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1808 |
+
if len(missing_keys) > 0:
|
1809 |
+
print(
|
1810 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
1811 |
+
f"and are newly initialized: {missing_keys}\n"
|
1812 |
+
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1813 |
+
)
|
1814 |
+
else:
|
1815 |
+
print(
|
1816 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
1817 |
+
f"If your task is similar to the task the model of the checkpoint was trained on, "
|
1818 |
+
f"you can already use {model.__class__.__name__} for predictions without further training."
|
1819 |
+
)
|
1820 |
+
if len(error_msgs) > 0:
|
1821 |
+
raise RuntimeError(
|
1822 |
+
"Error(s) in loading state_dict for {}:\n\t{}".format(
|
1823 |
+
model.__class__.__name__, "\n\t".join(error_msgs)
|
1824 |
+
)
|
1825 |
+
)
|
1826 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1827 |
+
model.eval()
|
1828 |
+
return model
|
1829 |
+
|
1830 |
+
def forward(
|
1831 |
+
self,
|
1832 |
+
images,
|
1833 |
+
image_shapes,
|
1834 |
+
gt_boxes=None,
|
1835 |
+
proposals=None,
|
1836 |
+
scales_yx=None,
|
1837 |
+
**kwargs,
|
1838 |
+
):
|
1839 |
+
"""
|
1840 |
+
kwargs:
|
1841 |
+
max_detections (int), return_tensors {"np", "pt", None}, padding {None,
|
1842 |
+
"max_detections"}, pad_value (int), location = {"cuda", "cpu"}
|
1843 |
+
"""
|
1844 |
+
data = next(self.parameters()).data
|
1845 |
+
with torch.no_grad():
|
1846 |
+
if self.training:
|
1847 |
+
print ("warning. you are attempting to train the frcnn model which is not supportd. switching to eval mode")
|
1848 |
+
self.eval()
|
1849 |
+
for param in self.parameters():
|
1850 |
+
param.requires_grad_(False)
|
1851 |
+
#print (image_shapes.dtype)
|
1852 |
+
return self.inference(
|
1853 |
+
images=images.to(dtype=data.dtype, device=data.device),
|
1854 |
+
image_shapes=image_shapes.to(device=data.device),
|
1855 |
+
gt_boxes=gt_boxes.to(dtype=data.dtype, device=data.device) if gt_boxes is not None else None,
|
1856 |
+
proposals=proposals.to(dtype=data.dtype, device=data.device) if proposals is not None else None,
|
1857 |
+
scales_yx=scales_yx.to(dtype=data.dtype, device=data.device) if scales_yx is not None else None,
|
1858 |
+
**kwargs,
|
1859 |
+
)
|
1860 |
+
|
1861 |
+
@torch.no_grad()
|
1862 |
+
def inference(
|
1863 |
+
self,
|
1864 |
+
images,
|
1865 |
+
image_shapes,
|
1866 |
+
gt_boxes=None,
|
1867 |
+
proposals=None,
|
1868 |
+
scales_yx=None,
|
1869 |
+
**kwargs,
|
1870 |
+
):
|
1871 |
+
# run images through backbone
|
1872 |
+
original_sizes = image_shapes * scales_yx
|
1873 |
+
features = self.backbone(images)
|
1874 |
+
|
1875 |
+
# generate proposals if none are available
|
1876 |
+
if proposals is None:
|
1877 |
+
proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes)
|
1878 |
+
else:
|
1879 |
+
assert proposals is not None
|
1880 |
+
|
1881 |
+
# pool object features from either gt_boxes, or from proposals
|
1882 |
+
obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes)
|
1883 |
+
|
1884 |
+
# prepare FRCNN Outputs and select top proposals
|
1885 |
+
boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs(
|
1886 |
+
obj_logits=obj_logits,
|
1887 |
+
attr_logits=attr_logits,
|
1888 |
+
box_deltas=box_deltas,
|
1889 |
+
pred_boxes=proposal_boxes,
|
1890 |
+
features=feature_pooled,
|
1891 |
+
sizes=image_shapes,
|
1892 |
+
scales=scales_yx,
|
1893 |
+
)
|
1894 |
+
|
1895 |
+
# will we pad???
|
1896 |
+
subset_kwargs = {
|
1897 |
+
"max_detections": kwargs.get("max_detections", None),
|
1898 |
+
"return_tensors": kwargs.get("return_tensors", None),
|
1899 |
+
"pad_value": kwargs.get("pad_value", 0),
|
1900 |
+
"padding": kwargs.get("padding", None),
|
1901 |
+
}
|
1902 |
+
preds_per_image = torch.tensor([p.size(0) for p in boxes])
|
1903 |
+
boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs)
|
1904 |
+
classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs)
|
1905 |
+
class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs)
|
1906 |
+
attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs)
|
1907 |
+
attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs)
|
1908 |
+
roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs)
|
1909 |
+
subset_kwargs["padding"] = None
|
1910 |
+
preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs)
|
1911 |
+
sizes = pad_list_tensors(image_shapes, None, **subset_kwargs)
|
1912 |
+
#print (boxes.device, original_sizes.device)
|
1913 |
+
normalized_boxes = norm_box(boxes, original_sizes.to(boxes.device))
|
1914 |
+
return OrderedDict(
|
1915 |
+
{
|
1916 |
+
"obj_ids": classes,
|
1917 |
+
"obj_probs": class_probs,
|
1918 |
+
"attr_ids": attrs,
|
1919 |
+
"attr_probs": attr_probs,
|
1920 |
+
"boxes": boxes,
|
1921 |
+
"sizes": sizes,
|
1922 |
+
"preds_per_image": preds_per_image,
|
1923 |
+
"roi_features": roi_features,
|
1924 |
+
"normalized_boxes": normalized_boxes,
|
1925 |
+
}
|
1926 |
+
)
|