checkpoint 494
Browse files- config.json +31 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_llama.py +159 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MightyLlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "transformers.models.llama.configuration_llama.LlamaConfig",
|
7 |
+
"AutoModelForCausalLM": "openaccess-ai-collective/mighty-llama-1b--modeling_llama.MightyLlamaForCausalLM"
|
8 |
+
},
|
9 |
+
"attention_bias": false,
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 2048,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 5632,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "mighty-llama",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 22,
|
21 |
+
"num_key_value_heads": 4,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 10000.0,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.37.0.dev0",
|
29 |
+
"use_cache": false,
|
30 |
+
"vocab_size": 32000
|
31 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 2048,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.37.0.dev0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0af19aa16c4d604f1a927c759de87ccb5fb0f003611998f1bd86294fc263132
|
3 |
+
size 2200119864
|
modeling_llama.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import LlamaModel, Cache, DynamicCache
|
5 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa, \
|
6 |
+
_prepare_4d_causal_attention_mask
|
7 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
class MightyLlamaModel(LlamaModel):
|
13 |
+
def forward(
|
14 |
+
self,
|
15 |
+
input_ids: torch.LongTensor = None,
|
16 |
+
attention_mask: Optional[torch.Tensor] = None,
|
17 |
+
position_ids: Optional[torch.LongTensor] = None,
|
18 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
19 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
20 |
+
use_cache: Optional[bool] = None,
|
21 |
+
output_attentions: Optional[bool] = None,
|
22 |
+
output_hidden_states: Optional[bool] = None,
|
23 |
+
return_dict: Optional[bool] = None,
|
24 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
25 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
26 |
+
output_hidden_states = (
|
27 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
28 |
+
)
|
29 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
30 |
+
|
31 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
32 |
+
|
33 |
+
# retrieve input_ids and inputs_embeds
|
34 |
+
if input_ids is not None and inputs_embeds is not None:
|
35 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
36 |
+
elif input_ids is not None:
|
37 |
+
batch_size, seq_length = input_ids.shape[:2]
|
38 |
+
elif inputs_embeds is not None:
|
39 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
40 |
+
else:
|
41 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
42 |
+
|
43 |
+
if self.gradient_checkpointing and self.training:
|
44 |
+
if use_cache:
|
45 |
+
logger.warning_once(
|
46 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
47 |
+
)
|
48 |
+
use_cache = False
|
49 |
+
|
50 |
+
past_key_values_length = 0
|
51 |
+
if use_cache:
|
52 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
53 |
+
if use_legacy_cache:
|
54 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
55 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
56 |
+
|
57 |
+
if position_ids is None:
|
58 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
59 |
+
position_ids = torch.arange(
|
60 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
61 |
+
)
|
62 |
+
position_ids = position_ids.unsqueeze(0)
|
63 |
+
|
64 |
+
if inputs_embeds is None:
|
65 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
66 |
+
|
67 |
+
if self._use_flash_attention_2:
|
68 |
+
# 2d mask is passed through the layers
|
69 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
70 |
+
elif self._use_sdpa and not output_attentions:
|
71 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
72 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
73 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
74 |
+
attention_mask,
|
75 |
+
(batch_size, seq_length),
|
76 |
+
inputs_embeds,
|
77 |
+
past_key_values_length,
|
78 |
+
)
|
79 |
+
else:
|
80 |
+
# 4d mask is passed through the layers
|
81 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
82 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
83 |
+
)
|
84 |
+
|
85 |
+
# embed positions
|
86 |
+
hidden_states = inputs_embeds
|
87 |
+
|
88 |
+
# decoder layers
|
89 |
+
all_hidden_states = () if output_hidden_states else None
|
90 |
+
all_self_attns = () if output_attentions else None
|
91 |
+
next_decoder_cache = None
|
92 |
+
|
93 |
+
layer_order = list(range(0, 3)) + [x for _ in range(1) for x in range(4, 17)] + list(range(18, len(self.layers)))
|
94 |
+
for idx, layer_idx in enumerate(layer_order):
|
95 |
+
decoder_layer = self.layers[layer_idx]
|
96 |
+
if output_hidden_states:
|
97 |
+
all_hidden_states += (hidden_states,)
|
98 |
+
|
99 |
+
if self.gradient_checkpointing and self.training:
|
100 |
+
layer_outputs = self._gradient_checkpointing_func(
|
101 |
+
decoder_layer.__call__,
|
102 |
+
hidden_states,
|
103 |
+
attention_mask,
|
104 |
+
position_ids,
|
105 |
+
past_key_values,
|
106 |
+
output_attentions,
|
107 |
+
use_cache,
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
layer_outputs = decoder_layer(
|
111 |
+
hidden_states,
|
112 |
+
attention_mask=attention_mask,
|
113 |
+
position_ids=position_ids,
|
114 |
+
past_key_value=past_key_values,
|
115 |
+
output_attentions=output_attentions,
|
116 |
+
use_cache=use_cache,
|
117 |
+
)
|
118 |
+
|
119 |
+
hidden_states = layer_outputs[0]
|
120 |
+
|
121 |
+
if use_cache:
|
122 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
123 |
+
|
124 |
+
if output_attentions:
|
125 |
+
all_self_attns += (layer_outputs[1],)
|
126 |
+
|
127 |
+
hidden_states = self.norm(hidden_states)
|
128 |
+
|
129 |
+
# add hidden states from the last decoder layer
|
130 |
+
if output_hidden_states:
|
131 |
+
all_hidden_states += (hidden_states,)
|
132 |
+
|
133 |
+
next_cache = None
|
134 |
+
if use_cache:
|
135 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
136 |
+
if not return_dict:
|
137 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
138 |
+
return BaseModelOutputWithPast(
|
139 |
+
last_hidden_state=hidden_states,
|
140 |
+
past_key_values=next_cache,
|
141 |
+
hidden_states=all_hidden_states,
|
142 |
+
attentions=all_self_attns,
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
class MightyLlamaForCausalLM(LlamaForCausalLM):
|
147 |
+
def __init__(self, config):
|
148 |
+
super().__init__(config)
|
149 |
+
self.model = MightyLlamaModel(config)
|
150 |
+
|
151 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
152 |
+
|
153 |
+
self.mem_id = None
|
154 |
+
self.mem_freq = None
|
155 |
+
self.top_k = None
|
156 |
+
self.max_seq_len = None
|
157 |
+
|
158 |
+
# Initialize weights and apply final processing
|
159 |
+
self.post_init()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"clean_up_tokenization_spaces": false,
|
32 |
+
"eos_token": "</s>",
|
33 |
+
"legacy": false,
|
34 |
+
"model_max_length": 1000000000000000019884624838656,
|
35 |
+
"pad_token": "</s>",
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"trust_remote_code": false,
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false,
|
43 |
+
"use_fast": true
|
44 |
+
}
|