Update README.md
Browse files
README.md
CHANGED
|
@@ -163,7 +163,7 @@ checkpoints are summarised in the following table with links to the models on th
|
|
| 163 |
|
| 164 |
## Usage
|
| 165 |
|
| 166 |
-
Whisper `large-v3` is supported in Hugging Face 🤗 Transformers
|
| 167 |
install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy
|
| 168 |
audio dataset from the Hugging Face Hub:
|
| 169 |
|
|
@@ -172,11 +172,10 @@ pip install --upgrade pip
|
|
| 172 |
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
|
| 173 |
```
|
| 174 |
|
|
|
|
|
|
|
| 175 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 176 |
-
class to transcribe audio files
|
| 177 |
-
long-form audio files, which in-practice is 9x faster than the sequential algorithm proposed by OpenAI
|
| 178 |
-
(see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). The batch size should
|
| 179 |
-
be set based on the specifications of your device:
|
| 180 |
|
| 181 |
```python
|
| 182 |
import torch
|
|
@@ -258,42 +257,260 @@ result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "fren
|
|
| 258 |
print(result["chunks"])
|
| 259 |
```
|
| 260 |
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
-
|
|
|
|
| 264 |
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
```
|
| 271 |
pip install flash-attn --no-build-isolation
|
| 272 |
```
|
| 273 |
|
| 274 |
-
|
| 275 |
|
| 276 |
```diff
|
| 277 |
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 278 |
-
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True,
|
| 279 |
```
|
| 280 |
|
| 281 |
-
|
| 282 |
|
| 283 |
-
If your GPU does not support Flash Attention, we recommend making use of [
|
| 284 |
-
|
|
|
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
```
|
| 287 |
-
pip install --upgrade optimum
|
| 288 |
-
```
|
| 289 |
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
```diff
|
| 293 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 294 |
-
+ model =
|
| 295 |
```
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
## Fine-Tuning
|
| 298 |
|
| 299 |
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|
|
|
|
| 163 |
|
| 164 |
## Usage
|
| 165 |
|
| 166 |
+
Whisper `large-v3` is supported in Hugging Face 🤗 Transformers. To run the model, first
|
| 167 |
install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy
|
| 168 |
audio dataset from the Hugging Face Hub:
|
| 169 |
|
|
|
|
| 172 |
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
|
| 173 |
```
|
| 174 |
|
| 175 |
+
### Short-Form Transcription
|
| 176 |
+
|
| 177 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 178 |
+
class to transcribe short-form audio files (< 30-seconds) as follows:
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
```python
|
| 181 |
import torch
|
|
|
|
| 257 |
print(result["chunks"])
|
| 258 |
```
|
| 259 |
|
| 260 |
+
<details>
|
| 261 |
+
|
| 262 |
+
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
| 263 |
+
|
| 264 |
+
Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
|
| 265 |
+
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
|
| 266 |
+
for more details.
|
| 267 |
+
|
| 268 |
+
```python
|
| 269 |
+
import torch
|
| 270 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 271 |
+
from datasets import Audio, load_dataset
|
| 272 |
+
|
| 273 |
|
| 274 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 275 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 276 |
|
| 277 |
+
model_id = "openai/whisper-large-v3"
|
| 278 |
+
|
| 279 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 280 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 281 |
+
)
|
| 282 |
+
model.to(device)
|
| 283 |
+
|
| 284 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 285 |
+
|
| 286 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 287 |
+
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 288 |
+
sample = dataset[0]["audio"]
|
| 289 |
|
| 290 |
+
input_features = processor(
|
| 291 |
+
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
|
| 292 |
+
).input_features
|
| 293 |
+
|
| 294 |
+
input_features = input_features.to(device, dtype=torch_dtype)
|
| 295 |
+
|
| 296 |
+
gen_kwargs = {
|
| 297 |
+
"max_new_tokens": 128,
|
| 298 |
+
"num_beams": 1,
|
| 299 |
+
"return_timestamps": False,
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
pred_ids = model.generate(input_features, **gen_kwargs)
|
| 303 |
+
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])
|
| 304 |
+
|
| 305 |
+
print(pred_text)
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
</details>
|
| 309 |
+
|
| 310 |
+
### Sequential Long-Form
|
| 311 |
+
|
| 312 |
+
This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
|
| 313 |
+
and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
| 314 |
+
|
| 315 |
+
The sequential long-form algorithm should be used in either of the following scenarios:
|
| 316 |
+
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
| 317 |
+
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
| 318 |
+
|
| 319 |
+
The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 320 |
+
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
| 321 |
+
|
| 322 |
+
```python
|
| 323 |
+
import torch
|
| 324 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 325 |
+
from datasets import load_dataset
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 329 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 330 |
+
|
| 331 |
+
model_id = "openai/whisper-large-v3"
|
| 332 |
+
|
| 333 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 334 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 335 |
+
)
|
| 336 |
+
model.to(device)
|
| 337 |
+
|
| 338 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 339 |
+
|
| 340 |
+
pipe = pipeline(
|
| 341 |
+
"automatic-speech-recognition",
|
| 342 |
+
model=model,
|
| 343 |
+
tokenizer=processor.tokenizer,
|
| 344 |
+
feature_extractor=processor.feature_extractor,
|
| 345 |
+
max_new_tokens=128,
|
| 346 |
+
torch_dtype=torch_dtype,
|
| 347 |
+
device=device,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 351 |
+
sample = dataset[0]["audio"]
|
| 352 |
+
|
| 353 |
+
result = pipe(sample)
|
| 354 |
+
print(result["text"])
|
| 355 |
+
```
|
| 356 |
+
|
| 357 |
+
<details>
|
| 358 |
+
|
| 359 |
+
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
| 360 |
+
|
| 361 |
+
```python
|
| 362 |
+
import torch
|
| 363 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 364 |
+
from datasets import Audio, load_dataset
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 368 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 369 |
+
|
| 370 |
+
model_id = "openai/whisper-large-v3"
|
| 371 |
+
|
| 372 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 373 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 374 |
+
)
|
| 375 |
+
model.to(device)
|
| 376 |
+
|
| 377 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 378 |
+
|
| 379 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 380 |
+
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
| 381 |
+
sample = dataset[0]["audio"]
|
| 382 |
+
|
| 383 |
+
inputs = processor(
|
| 384 |
+
sample["array"],
|
| 385 |
+
sampling_rate=sample["sampling_rate"],
|
| 386 |
+
return_tensors="pt",
|
| 387 |
+
truncation=False,
|
| 388 |
+
padding="longest",
|
| 389 |
+
return_attention_mask=True,
|
| 390 |
+
)
|
| 391 |
+
inputs = inputs.to(device, dtype=torch_dtype)
|
| 392 |
+
|
| 393 |
+
gen_kwargs = {
|
| 394 |
+
"max_new_tokens": 448,
|
| 395 |
+
"num_beams": 1,
|
| 396 |
+
"condition_on_prev_tokens": False,
|
| 397 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
| 398 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 399 |
+
"logprob_threshold": -1.0,
|
| 400 |
+
"no_speech_threshold": 0.6,
|
| 401 |
+
"return_timestamps": True,
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
pred_ids = model.generate(**i nputs, **gen_kwargs)
|
| 405 |
+
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
|
| 406 |
+
|
| 407 |
+
print(pred_text)
|
| 408 |
+
```
|
| 409 |
+
|
| 410 |
+
</details>
|
| 411 |
+
|
| 412 |
+
### Chunked Long-Form
|
| 413 |
+
|
| 414 |
+
large-v3 remains compatible with the Transformers chunked long-form algorithm. This algorithm should be used when
|
| 415 |
+
a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
| 416 |
+
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
|
| 417 |
+
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
|
| 418 |
+
|
| 419 |
+
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
|
| 420 |
+
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
|
| 421 |
+
|
| 422 |
+
```python
|
| 423 |
+
import torch
|
| 424 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 425 |
+
from datasets import load_dataset
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 429 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 430 |
+
|
| 431 |
+
model_id = "openai/whisper-large-v3"
|
| 432 |
+
|
| 433 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 434 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 435 |
+
)
|
| 436 |
+
model.to(device)
|
| 437 |
+
|
| 438 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 439 |
+
|
| 440 |
+
pipe = pipeline(
|
| 441 |
+
"automatic-speech-recognition",
|
| 442 |
+
model=model,
|
| 443 |
+
tokenizer=processor.tokenizer,
|
| 444 |
+
feature_extractor=processor.feature_extractor,
|
| 445 |
+
max_new_tokens=128,
|
| 446 |
+
chunk_length_s=25,
|
| 447 |
+
batch_size=16,
|
| 448 |
+
torch_dtype=torch_dtype,
|
| 449 |
+
device=device,
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
| 453 |
+
sample = dataset[0]["audio"]
|
| 454 |
+
|
| 455 |
+
result = pipe(sample)
|
| 456 |
+
print(result["text"])
|
| 457 |
+
```
|
| 458 |
+
|
| 459 |
+
### Additional Speed & Memory Improvements
|
| 460 |
+
|
| 461 |
+
You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM
|
| 462 |
+
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
|
| 463 |
+
more efficient flash attention version.
|
| 464 |
+
|
| 465 |
+
#### Flash Attention 2
|
| 466 |
+
|
| 467 |
+
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
|
| 468 |
+
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
|
| 469 |
|
| 470 |
```
|
| 471 |
pip install flash-attn --no-build-isolation
|
| 472 |
```
|
| 473 |
|
| 474 |
+
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 475 |
|
| 476 |
```diff
|
| 477 |
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 478 |
+
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
|
| 479 |
```
|
| 480 |
|
| 481 |
+
#### Torch Scale-Product-Attention (SDPA)
|
| 482 |
|
| 483 |
+
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
|
| 484 |
+
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
|
| 485 |
+
whether you have a compatible PyTorch version, run the following Python code snippet:
|
| 486 |
|
| 487 |
+
```python
|
| 488 |
+
from transformers.utils import is_torch_sdpa_available
|
| 489 |
+
|
| 490 |
+
print(is_torch_sdpa_available())
|
| 491 |
```
|
|
|
|
|
|
|
| 492 |
|
| 493 |
+
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
|
| 494 |
+
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
|
| 495 |
+
|
| 496 |
+
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
|
| 497 |
+
`attn_implementation="sdpa"` as follows:
|
| 498 |
|
| 499 |
```diff
|
| 500 |
+
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 501 |
+
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
| 502 |
```
|
| 503 |
|
| 504 |
+
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
|
| 505 |
+
|
| 506 |
+
#### Torch compile
|
| 507 |
+
|
| 508 |
+
Coming soon...
|
| 509 |
+
|
| 510 |
+
#### 4-bit and 8-bit Inference
|
| 511 |
+
|
| 512 |
+
Coming soon...
|
| 513 |
+
|
| 514 |
## Fine-Tuning
|
| 515 |
|
| 516 |
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|