finalf0 commited on
Commit
7d01e83
1 Parent(s): d301034

add model files

Browse files
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/CPM-2B",
3
+ "architectures": [
4
+ "MiniCPMForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
8
+ "AutoModel": "modeling_minicpm.MiniCPMModel",
9
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
10
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
11
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
12
+ },
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 2304,
17
+ "initializer_range": 0.1,
18
+ "intermediate_size": 5760,
19
+ "max_position_embeddings": 4096,
20
+ "num_attention_heads": 36,
21
+ "num_hidden_layers": 40,
22
+ "num_key_value_heads": 36,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.36.0",
27
+ "use_cache": true,
28
+ "vocab_size": 122753,
29
+ "scale_emb": 12,
30
+ "dim_model_base": 256,
31
+ "scale_depth": 1.4,
32
+ "num_experts": 8,
33
+ "num_experts_per_tok": 2
34
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class MiniCPMConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`MiniCPMModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
65
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
103
+
104
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
105
+ >>> configuration = MiniCPMConfig()
106
+
107
+ >>> # Initializing a model from the minicpm-7b style configuration
108
+ >>> model = MiniCPMModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "minicpm"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=True,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ scale_emb=1,
140
+ dim_model_base=1,
141
+ scale_depth=1,
142
+ num_experts=0,
143
+ num_experts_per_tok=0,
144
+ **kwargs,
145
+ ):
146
+ self.vocab_size = vocab_size
147
+ self.max_position_embeddings = max_position_embeddings
148
+ self.hidden_size = hidden_size
149
+ self.intermediate_size = intermediate_size
150
+ self.num_hidden_layers = num_hidden_layers
151
+ self.num_attention_heads = num_attention_heads
152
+
153
+ # for backward compatibility
154
+ if num_key_value_heads is None:
155
+ num_key_value_heads = num_attention_heads
156
+
157
+ self.num_key_value_heads = num_key_value_heads
158
+ self.hidden_act = hidden_act
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.pretraining_tp = pretraining_tp
162
+ self.use_cache = use_cache
163
+ self.rope_theta = rope_theta
164
+ self.rope_scaling = rope_scaling
165
+ self._rope_scaling_validation()
166
+ self.attention_bias = attention_bias
167
+ self.attention_dropout = attention_dropout
168
+ self.scale_emb = scale_emb
169
+ self.dim_model_base = dim_model_base
170
+ self.scale_depth = scale_depth
171
+ self.num_experts = num_experts
172
+ self.num_experts_per_tok = num_experts_per_tok
173
+
174
+ super().__init__(
175
+ pad_token_id=pad_token_id,
176
+ bos_token_id=bos_token_id,
177
+ eos_token_id=eos_token_id,
178
+ tie_word_embeddings=tie_word_embeddings,
179
+ **kwargs,
180
+ )
181
+ try:
182
+ import flash_attn
183
+ self._attn_implementation = "flash_attention_2"
184
+ except:
185
+ pass
186
+
187
+ def _rope_scaling_validation(self):
188
+ """
189
+ Validate the `rope_scaling` configuration.
190
+ """
191
+ if self.rope_scaling is None:
192
+ return
193
+
194
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
195
+ raise ValueError(
196
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
197
+ f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
201
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
202
+ raise ValueError(
203
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
204
+ )
205
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
206
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "top_p": 0.8,
4
+ "temperature": 0.8,
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2
7
+ }
modeling_minicpm.py ADDED
@@ -0,0 +1,1534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch MiniCPM model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union, Dict
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_minicpm import MiniCPMConfig
52
+ import re
53
+
54
+ try:
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+ except:
58
+ pass
59
+
60
+
61
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
62
+ # It means that the function will not be traced through and simply appear as a node in the graph.
63
+ if is_torch_fx_available():
64
+ if not is_torch_greater_or_equal_than_1_13:
65
+ import torch.fx
66
+
67
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
68
+
69
+
70
+ logger = logging.get_logger(__name__)
71
+
72
+ _CONFIG_FOR_DOC = "MiniCPMConfig"
73
+
74
+
75
+ def _get_unpad_data(attention_mask):
76
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
79
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
80
+ return (
81
+ indices,
82
+ cu_seqlens,
83
+ max_seqlen_in_batch,
84
+ )
85
+
86
+
87
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
88
+ warnings.warn(
89
+ "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
90
+ )
91
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
92
+
93
+
94
+ def _make_causal_mask(
95
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
96
+ ):
97
+ warnings.warn(
98
+ "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
99
+ )
100
+ return AttentionMaskConverter._make_causal_mask(
101
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
102
+ )
103
+
104
+ # @torch.jit.script # type: ignore
105
+ def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
106
+ old_dtype = hidden.dtype
107
+ variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
108
+ hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
109
+ return hidden * weight
110
+
111
+
112
+ class MiniCPMRMSNorm(nn.Module):
113
+ def __init__(self, hidden_size, eps=1e-6):
114
+ """
115
+ MiniCPMRMSNorm is equivalent to T5LayerNorm
116
+ """
117
+ super().__init__()
118
+ self.weight = nn.Parameter(torch.ones(hidden_size))
119
+ self.variance_epsilon = eps
120
+
121
+ def forward(self, hidden_states):
122
+ return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
123
+
124
+
125
+ ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
126
+
127
+
128
+ class MiniCPMRotaryEmbedding(nn.Module):
129
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
130
+ super().__init__()
131
+
132
+ self.dim = dim
133
+ self.max_position_embeddings = max_position_embeddings
134
+ self.base = base
135
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
136
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
137
+
138
+ # Build here to make `torch.jit.trace` work.
139
+ self._set_cos_sin_cache(
140
+ # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
141
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
142
+ )
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ self.max_seq_len_cached = seq_len
146
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
147
+ freqs = torch.outer(t, self.inv_freq)
148
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
149
+ emb = torch.cat((freqs, freqs), dim=-1)
150
+
151
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
152
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
153
+
154
+ def forward(self, x, seq_len=None):
155
+ # x: [bs, num_attention_heads, seq_len, head_size]
156
+ if seq_len > self.max_seq_len_cached:
157
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
158
+
159
+ return (
160
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
161
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
162
+ )
163
+
164
+
165
+ class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
166
+ """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
167
+
168
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+ t = t / self.scaling_factor
176
+
177
+ freqs = torch.outer(t, self.inv_freq)
178
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
179
+ emb = torch.cat((freqs, freqs), dim=-1)
180
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
181
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
182
+
183
+
184
+ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
185
+ """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+
194
+ if seq_len > self.max_position_embeddings:
195
+ base = self.base * (
196
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
197
+ ) ** (self.dim / (self.dim - 2))
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
199
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
200
+
201
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
202
+
203
+ freqs = torch.outer(t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1)
206
+
207
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
208
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
209
+
210
+
211
+ def rotate_half(x):
212
+ """Rotates half the hidden dims of the input."""
213
+ x1 = x[..., : x.shape[-1] // 2]
214
+ x2 = x[..., x.shape[-1] // 2 :]
215
+ return torch.cat((-x2, x1), dim=-1)
216
+
217
+
218
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
219
+ """Applies Rotary Position Embedding to the query and key tensors.
220
+
221
+ Args:
222
+ q (`torch.Tensor`): The query tensor.
223
+ k (`torch.Tensor`): The key tensor.
224
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
225
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
226
+ position_ids (`torch.Tensor`):
227
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
228
+ used to pass offsetted position ids when working with a KV-cache.
229
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
230
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
231
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
232
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
233
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
234
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
235
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
236
+ Returns:
237
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
238
+ """
239
+ # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
240
+ # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
241
+ # q_embed = (q * cos) + (rotate_half(q) * sin)
242
+ # k_embed = (k * cos) + (rotate_half(k) * sin)
243
+ orig_dtype = k.dtype
244
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
245
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
246
+ q_fp32 = q.to(dtype=torch.float32, device=q.device)
247
+ k_fp32 = k.to(dtype=torch.float32, device=k.device)
248
+ q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
249
+ k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
250
+ return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
251
+
252
+ class MiniCPMMLP(nn.Module):
253
+ def __init__(self, config):
254
+ super().__init__()
255
+ self.config = config
256
+ self.hidden_size = config.hidden_size
257
+ self.intermediate_size = config.intermediate_size
258
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
259
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
260
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
261
+ self.act_fn = ACT2FN[config.hidden_act]
262
+
263
+ def forward(self, x):
264
+ if self.config.pretraining_tp > 1:
265
+ slice = self.intermediate_size // self.config.pretraining_tp
266
+ gate_proj_slices = self.w1.weight.split(slice, dim=0)
267
+ up_proj_slices = self.w3.weight.split(slice, dim=0)
268
+ down_proj_slices = self.w2.weight.split(slice, dim=1)
269
+
270
+ gate_proj = torch.cat(
271
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
272
+ )
273
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
274
+
275
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
276
+ down_proj = [
277
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
278
+ ]
279
+ down_proj = sum(down_proj)
280
+ else:
281
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
282
+
283
+ return down_proj
284
+
285
+
286
+ class AddAuxiliaryLoss(torch.autograd.Function):
287
+ """
288
+ The trick function of adding auxiliary (aux) loss,
289
+ which includes the gradient of the aux loss during backpropagation.
290
+ """
291
+ @staticmethod
292
+ def forward(ctx, x, loss):
293
+ assert loss.numel() == 1
294
+ ctx.dtype = loss.dtype
295
+ ctx.required_aux_loss = loss.requires_grad
296
+ return x
297
+
298
+ @staticmethod
299
+ def backward(ctx, grad_output):
300
+ grad_loss = None
301
+ if ctx.required_aux_loss:
302
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
303
+ return grad_output, grad_loss
304
+
305
+
306
+ class MiniCPMMoE(nn.Module):
307
+ def __init__(self, config):
308
+ super().__init__()
309
+ self.config = config
310
+ self.num_experts = config.num_experts
311
+ self.num_experts_per_tok = config.num_experts_per_tok
312
+ self.experts = nn.ModuleList(
313
+ [MiniCPMMLP(config) for i in range(self.num_experts)]
314
+ )
315
+ self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
316
+ self.intermediate_size = config.intermediate_size
317
+
318
+ def forward(self, hidden_states):
319
+ orig_shape = hidden_states.shape
320
+ orig_dtype = hidden_states.dtype
321
+ hidden_states = hidden_states.view(-1, orig_shape[-1])
322
+ token_num = hidden_states.shape[0]
323
+ scores = self.gate(hidden_states)
324
+ scores_prob = F.softmax(scores, dim=-1, dtype=torch.float32)
325
+ expert_weights, expert_indices = torch.topk(scores_prob, self.num_experts_per_tok, dim=-1)
326
+ expert_weights = expert_weights / expert_weights.sum(dim=-1, keepdim=True)
327
+ topk_idx_flat = expert_indices.view(-1)
328
+ expert_weights = expert_weights.to(orig_dtype)
329
+
330
+ if self.training:
331
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
332
+ y = torch.empty_like(hidden_states)
333
+ for i in range(self.num_experts):
334
+ y[topk_idx_flat == i] = self.experts[i](hidden_states[topk_idx_flat == i])
335
+ y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1)
336
+ y = y.view(*orig_shape)
337
+
338
+ load = expert_indices.view(-1).bincount(minlength=self.num_experts)
339
+ load_mean = load / (token_num * self.num_experts_per_tok)
340
+ importance_mean = scores_prob.mean(dim=0)
341
+ balance_loss = self.num_experts * torch.sum(importance_mean * load_mean)
342
+
343
+ y = AddAuxiliaryLoss.apply(y, balance_loss)
344
+ else:
345
+ y = self.moe_infer(hidden_states, topk_idx_flat, expert_weights.view(-1, 1)).view(*orig_shape)
346
+ return y
347
+
348
+ @torch.no_grad()
349
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
350
+ expert_cache = torch.zeros_like(x)
351
+ idxs = flat_expert_indices.argsort()
352
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
353
+ token_idxs = idxs // self.num_experts_per_tok
354
+ for i, end_idx in enumerate(tokens_per_expert):
355
+ start_idx = 0 if i == 0 else tokens_per_expert[i-1]
356
+ if start_idx == end_idx:
357
+ continue
358
+ expert = self.experts[i]
359
+ exp_token_idx = token_idxs[start_idx:end_idx]
360
+ expert_tokens = x[exp_token_idx]
361
+ expert_out = expert(expert_tokens)
362
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
363
+ expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
364
+ return expert_cache
365
+
366
+
367
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
368
+ """
369
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
370
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
371
+ """
372
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
373
+ if n_rep == 1:
374
+ return hidden_states
375
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
376
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
377
+
378
+
379
+ class MiniCPMAttention(nn.Module):
380
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
381
+
382
+ def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
383
+ super().__init__()
384
+ self.config = config
385
+ self.layer_idx = layer_idx
386
+ if layer_idx is None:
387
+ logger.warning_once(
388
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
389
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
390
+ "when creating this class."
391
+ )
392
+
393
+ self.attention_dropout = config.attention_dropout
394
+ self.hidden_size = config.hidden_size
395
+ self.num_heads = config.num_attention_heads
396
+ self.head_dim = self.hidden_size // self.num_heads
397
+ self.num_key_value_heads = config.num_key_value_heads
398
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
399
+ self.max_position_embeddings = config.max_position_embeddings
400
+ self.rope_theta = config.rope_theta
401
+ self.is_causal = True
402
+
403
+ if (self.head_dim * self.num_heads) != self.hidden_size:
404
+ raise ValueError(
405
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
406
+ f" and `num_heads`: {self.num_heads})."
407
+ )
408
+
409
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
410
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
411
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
412
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
413
+ self._init_rope()
414
+
415
+ def _init_rope(self):
416
+ if self.config.rope_scaling is None:
417
+ self.rotary_emb = MiniCPMRotaryEmbedding(
418
+ self.head_dim,
419
+ max_position_embeddings=self.max_position_embeddings,
420
+ base=self.rope_theta,
421
+ )
422
+ else:
423
+ scaling_type = self.config.rope_scaling["type"]
424
+ scaling_factor = self.config.rope_scaling["factor"]
425
+ if scaling_type == "linear":
426
+ self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
427
+ self.head_dim,
428
+ max_position_embeddings=self.max_position_embeddings,
429
+ scaling_factor=scaling_factor,
430
+ base=self.rope_theta,
431
+ )
432
+ elif scaling_type == "dynamic":
433
+ self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
434
+ self.head_dim,
435
+ max_position_embeddings=self.max_position_embeddings,
436
+ scaling_factor=scaling_factor,
437
+ base=self.rope_theta,
438
+ )
439
+ else:
440
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
441
+
442
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
443
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
444
+
445
+ def forward(
446
+ self,
447
+ hidden_states: torch.Tensor,
448
+ attention_mask: Optional[torch.Tensor] = None,
449
+ position_ids: Optional[torch.LongTensor] = None,
450
+ past_key_value: Optional[Cache] = None,
451
+ output_attentions: bool = False,
452
+ use_cache: bool = False,
453
+ **kwargs,
454
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
455
+ if "padding_mask" in kwargs:
456
+ warnings.warn(
457
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
458
+ )
459
+
460
+ bsz, q_len, _ = hidden_states.size()
461
+
462
+ if self.config.pretraining_tp > 1:
463
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
464
+ query_slices = self.q_proj.weight.split(
465
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
466
+ )
467
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
468
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
469
+
470
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
471
+ query_states = torch.cat(query_states, dim=-1)
472
+
473
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
474
+ key_states = torch.cat(key_states, dim=-1)
475
+
476
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
477
+ value_states = torch.cat(value_states, dim=-1)
478
+
479
+ else:
480
+ query_states = self.q_proj(hidden_states)
481
+ key_states = self.k_proj(hidden_states)
482
+ value_states = self.v_proj(hidden_states)
483
+
484
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
485
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
486
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
487
+
488
+ kv_seq_len = key_states.shape[-2]
489
+ if past_key_value is not None:
490
+ if self.layer_idx is None:
491
+ raise ValueError(
492
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
493
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
494
+ "with a layer index."
495
+ )
496
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
497
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
498
+
499
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
500
+
501
+ if past_key_value is not None:
502
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
503
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
504
+
505
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
506
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
507
+
508
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
509
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
510
+ raise ValueError(
511
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
512
+ f" {attn_weights.size()}"
513
+ )
514
+
515
+ if attention_mask is not None:
516
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
517
+ raise ValueError(
518
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
519
+ )
520
+ attn_weights = attn_weights + attention_mask
521
+
522
+ # upcast attention to fp32
523
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
524
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
525
+ attn_output = torch.matmul(attn_weights, value_states)
526
+
527
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
528
+ raise ValueError(
529
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
530
+ f" {attn_output.size()}"
531
+ )
532
+
533
+ attn_output = attn_output.transpose(1, 2).contiguous()
534
+
535
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
536
+
537
+ if self.config.pretraining_tp > 1:
538
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
539
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
540
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
541
+ else:
542
+ attn_output = self.o_proj(attn_output)
543
+
544
+ if not output_attentions:
545
+ attn_weights = None
546
+
547
+ return attn_output, attn_weights, past_key_value
548
+
549
+
550
+ class MiniCPMFlashAttention2(MiniCPMAttention):
551
+ """
552
+ MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
553
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
554
+ flash attention and deal with padding tokens in case the input contains any of them.
555
+ """
556
+
557
+ def __init__(self, *args, **kwargs):
558
+ super().__init__(*args, **kwargs)
559
+
560
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
561
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
562
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
563
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
564
+
565
+ def forward(
566
+ self,
567
+ hidden_states: torch.Tensor,
568
+ attention_mask: Optional[torch.LongTensor] = None,
569
+ position_ids: Optional[torch.LongTensor] = None,
570
+ past_key_value: Optional[Cache] = None,
571
+ output_attentions: bool = False,
572
+ use_cache: bool = False,
573
+ **kwargs,
574
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
575
+ # MiniCPMFlashAttention2 attention does not support output_attentions
576
+ if "padding_mask" in kwargs:
577
+ warnings.warn(
578
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
579
+ )
580
+
581
+ # overwrite attention_mask with padding_mask
582
+ attention_mask = kwargs.pop("padding_mask")
583
+
584
+ output_attentions = False
585
+
586
+ bsz, q_len, _ = hidden_states.size()
587
+
588
+ query_states = self.q_proj(hidden_states)
589
+ key_states = self.k_proj(hidden_states)
590
+ value_states = self.v_proj(hidden_states)
591
+
592
+ # Flash attention requires the input to have the shape
593
+ # batch_size x seq_length x head_dim x hidden_dim
594
+ # therefore we just need to keep the original shape
595
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
596
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
597
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
598
+
599
+ kv_seq_len = key_states.shape[-2]
600
+ if past_key_value is not None:
601
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
602
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
603
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
604
+
605
+ if past_key_value is not None:
606
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
607
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
608
+
609
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
610
+ # to be able to avoid many of these transpose/reshape/view.
611
+ query_states = query_states.transpose(1, 2)
612
+ key_states = key_states.transpose(1, 2)
613
+ value_states = value_states.transpose(1, 2)
614
+
615
+ dropout_rate = self.attention_dropout if self.training else 0.0
616
+
617
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
618
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
619
+ # cast them back in the correct dtype just to be sure everything works as expected.
620
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
621
+ # in fp32. (MiniCPMRMSNorm handles it correctly)
622
+
623
+ input_dtype = query_states.dtype
624
+ if input_dtype == torch.float32:
625
+ # Handle the case where the model is quantized
626
+ if hasattr(self.config, "_pre_quantization_dtype"):
627
+ target_dtype = self.config._pre_quantization_dtype
628
+ else:
629
+ target_dtype = self.q_proj.weight.dtype
630
+
631
+ logger.warning_once(
632
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
633
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
634
+ f" {target_dtype}."
635
+ )
636
+
637
+ query_states = query_states.to(target_dtype)
638
+ key_states = key_states.to(target_dtype)
639
+ value_states = value_states.to(target_dtype)
640
+
641
+ attn_output = self._flash_attention_forward(
642
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
643
+ )
644
+
645
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
646
+ attn_output = self.o_proj(attn_output)
647
+
648
+ if not output_attentions:
649
+ attn_weights = None
650
+
651
+ return attn_output, attn_weights, past_key_value
652
+
653
+ def _flash_attention_forward(
654
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
655
+ ):
656
+ """
657
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
658
+ first unpad the input, then computes the attention scores and pad the final attention scores.
659
+
660
+ Args:
661
+ query_states (`torch.Tensor`):
662
+ Input query states to be passed to Flash Attention API
663
+ key_states (`torch.Tensor`):
664
+ Input key states to be passed to Flash Attention API
665
+ value_states (`torch.Tensor`):
666
+ Input value states to be passed to Flash Attention API
667
+ attention_mask (`torch.Tensor`):
668
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
669
+ position of padding tokens and 1 for the position of non-padding tokens.
670
+ dropout (`int`, *optional*):
671
+ Attention dropout
672
+ softmax_scale (`float`, *optional*):
673
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
674
+ """
675
+ if not self._flash_attn_uses_top_left_mask:
676
+ causal = self.is_causal
677
+ else:
678
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
679
+ causal = self.is_causal and query_length != 1
680
+ # Contains at least one padding token in the sequence
681
+ if attention_mask is not None:
682
+ batch_size = query_states.shape[0]
683
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
684
+ query_states, key_states, value_states, attention_mask, query_length
685
+ )
686
+
687
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
688
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
689
+ attn_output_unpad = flash_attn_varlen_func(
690
+ query_states,
691
+ key_states,
692
+ value_states,
693
+ cu_seqlens_q=cu_seqlens_q,
694
+ cu_seqlens_k=cu_seqlens_k,
695
+ max_seqlen_q=max_seqlen_in_batch_q,
696
+ max_seqlen_k=max_seqlen_in_batch_k,
697
+ dropout_p=dropout,
698
+ softmax_scale=softmax_scale,
699
+ causal=causal,
700
+ )
701
+
702
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
703
+ else:
704
+ attn_output = flash_attn_func(
705
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
706
+ )
707
+
708
+ return attn_output
709
+
710
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
711
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
712
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
713
+
714
+ key_layer = index_first_axis(
715
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
716
+ )
717
+ value_layer = index_first_axis(
718
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
719
+ )
720
+ if query_length == kv_seq_len:
721
+ query_layer = index_first_axis(
722
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
723
+ )
724
+ cu_seqlens_q = cu_seqlens_k
725
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
726
+ indices_q = indices_k
727
+ elif query_length == 1:
728
+ max_seqlen_in_batch_q = 1
729
+ cu_seqlens_q = torch.arange(
730
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
731
+ ) # There is a memcpy here, that is very bad.
732
+ indices_q = cu_seqlens_q[:-1]
733
+ query_layer = query_layer.squeeze(1)
734
+ else:
735
+ # The -q_len: slice assumes left padding.
736
+ attention_mask = attention_mask[:, -query_length:]
737
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
738
+
739
+ return (
740
+ query_layer,
741
+ key_layer,
742
+ value_layer,
743
+ indices_q,
744
+ (cu_seqlens_q, cu_seqlens_k),
745
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
746
+ )
747
+
748
+
749
+ class MiniCPMSdpaAttention(MiniCPMAttention):
750
+ """
751
+ MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
752
+ `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
753
+ SDPA API.
754
+ """
755
+
756
+ # Adapted from MiniCPMAttention.forward
757
+ def forward(
758
+ self,
759
+ hidden_states: torch.Tensor,
760
+ attention_mask: Optional[torch.Tensor] = None,
761
+ position_ids: Optional[torch.LongTensor] = None,
762
+ past_key_value: Optional[Cache] = None,
763
+ output_attentions: bool = False,
764
+ use_cache: bool = False,
765
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
766
+ if output_attentions:
767
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
768
+ logger.warning_once(
769
+ "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
770
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
771
+ )
772
+ return super().forward(
773
+ hidden_states=hidden_states,
774
+ attention_mask=attention_mask,
775
+ position_ids=position_ids,
776
+ past_key_value=past_key_value,
777
+ output_attentions=output_attentions,
778
+ use_cache=use_cache,
779
+ )
780
+
781
+ bsz, q_len, _ = hidden_states.size()
782
+
783
+ query_states = self.q_proj(hidden_states)
784
+ key_states = self.k_proj(hidden_states)
785
+ value_states = self.v_proj(hidden_states)
786
+
787
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
788
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
789
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
790
+
791
+ kv_seq_len = key_states.shape[-2]
792
+ if past_key_value is not None:
793
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
794
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
795
+
796
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
797
+
798
+ if past_key_value is not None:
799
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
800
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
801
+
802
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
803
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
804
+
805
+ if attention_mask is not None:
806
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
807
+ raise ValueError(
808
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
809
+ )
810
+
811
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
812
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
813
+ if query_states.device.type == "cuda" and attention_mask is not None:
814
+ query_states = query_states.contiguous()
815
+ key_states = key_states.contiguous()
816
+ value_states = value_states.contiguous()
817
+
818
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
819
+ query_states,
820
+ key_states,
821
+ value_states,
822
+ attn_mask=attention_mask,
823
+ dropout_p=self.attention_dropout if self.training else 0.0,
824
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
825
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
826
+ )
827
+
828
+ attn_output = attn_output.transpose(1, 2).contiguous()
829
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
830
+
831
+ attn_output = self.o_proj(attn_output)
832
+
833
+ return attn_output, None, past_key_value
834
+
835
+
836
+ MINICPM_ATTENTION_CLASSES = {
837
+ "eager": MiniCPMAttention,
838
+ "flash_attention_2": MiniCPMFlashAttention2,
839
+ "sdpa": MiniCPMSdpaAttention,
840
+ }
841
+
842
+
843
+ class MiniCPMDecoderLayer(nn.Module):
844
+ def __init__(self, config: MiniCPMConfig, layer_idx: int):
845
+ super().__init__()
846
+ self.hidden_size = config.hidden_size
847
+ self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
848
+
849
+ self.mlp = MiniCPMMoE(config)
850
+ self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
851
+ self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
852
+
853
+ self.scale_depth = config.scale_depth
854
+ self.num_hidden_layers = config.num_hidden_layers
855
+
856
+ def forward(
857
+ self,
858
+ hidden_states: torch.Tensor,
859
+ attention_mask: Optional[torch.Tensor] = None,
860
+ position_ids: Optional[torch.LongTensor] = None,
861
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
862
+ output_attentions: Optional[bool] = False,
863
+ use_cache: Optional[bool] = False,
864
+ **kwargs,
865
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
866
+ """
867
+ Args:
868
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
869
+ attention_mask (`torch.FloatTensor`, *optional*):
870
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
871
+ query_sequence_length, key_sequence_length)` if default attention is used.
872
+ output_attentions (`bool`, *optional*):
873
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
874
+ returned tensors for more detail.
875
+ use_cache (`bool`, *optional*):
876
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
877
+ (see `past_key_values`).
878
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
879
+ """
880
+ if "padding_mask" in kwargs:
881
+ warnings.warn(
882
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
883
+ )
884
+
885
+ residual = hidden_states
886
+ hidden_states = self.input_layernorm(hidden_states)
887
+ # Self Attention
888
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
889
+ hidden_states=hidden_states,
890
+ attention_mask=attention_mask,
891
+ position_ids=position_ids,
892
+ past_key_value=past_key_value,
893
+ output_attentions=output_attentions,
894
+ use_cache=use_cache,
895
+ **kwargs,
896
+ )
897
+
898
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
899
+
900
+ # Fully Connected
901
+ residual = hidden_states
902
+ hidden_states = self.post_attention_layernorm(hidden_states)
903
+
904
+ hidden_states = self.mlp(hidden_states)
905
+
906
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
907
+
908
+ outputs = (hidden_states,)
909
+
910
+ if output_attentions:
911
+ outputs += (self_attn_weights,)
912
+
913
+ if use_cache:
914
+ outputs += (present_key_value,)
915
+
916
+ return outputs
917
+
918
+
919
+ MINICPM_START_DOCSTRING = r"""
920
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
921
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
922
+ etc.)
923
+
924
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
925
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
926
+ and behavior.
927
+
928
+ Parameters:
929
+ config ([`MiniCPMConfig`]):
930
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
931
+ load the weights associated with the model, only the configuration. Check out the
932
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
933
+ """
934
+
935
+
936
+ @add_start_docstrings(
937
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
938
+ MINICPM_START_DOCSTRING,
939
+ )
940
+ class MiniCPMPreTrainedModel(PreTrainedModel):
941
+ config_class = MiniCPMConfig
942
+ base_model_prefix = "model"
943
+ supports_gradient_checkpointing = True
944
+ _no_split_modules = ["MiniCPMDecoderLayer"]
945
+ _skip_keys_device_placement = "past_key_values"
946
+ _supports_flash_attn_2 = True
947
+ _supports_sdpa = True
948
+ _supports_cache_class = True
949
+
950
+ def _init_weights(self, module):
951
+ std = self.config.initializer_range
952
+ if isinstance(module, nn.Linear):
953
+ module.weight.data.normal_(mean=0.0, std=std)
954
+ if module.bias is not None:
955
+ module.bias.data.zero_()
956
+ elif isinstance(module, nn.Embedding):
957
+ module.weight.data.normal_(mean=0.0, std=std)
958
+ if module.padding_idx is not None:
959
+ module.weight.data[module.padding_idx].zero_()
960
+
961
+
962
+ MINICPM_INPUTS_DOCSTRING = r"""
963
+ Args:
964
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
965
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
966
+ it.
967
+
968
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
969
+ [`PreTrainedTokenizer.__call__`] for details.
970
+
971
+ [What are input IDs?](../glossary#input-ids)
972
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
973
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
974
+
975
+ - 1 for tokens that are **not masked**,
976
+ - 0 for tokens that are **masked**.
977
+
978
+ [What are attention masks?](../glossary#attention-mask)
979
+
980
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
981
+ [`PreTrainedTokenizer.__call__`] for details.
982
+
983
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
984
+ `past_key_values`).
985
+
986
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
987
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
988
+ information on the default strategy.
989
+
990
+ - 1 indicates the head is **not masked**,
991
+ - 0 indicates the head is **masked**.
992
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
993
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
994
+ config.n_positions - 1]`.
995
+
996
+ [What are position IDs?](../glossary#position-ids)
997
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
998
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
999
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1000
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1001
+
1002
+ Two formats are allowed:
1003
+ - a [`~cache_utils.Cache`] instance;
1004
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1005
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1006
+ cache format.
1007
+
1008
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1009
+ legacy cache format will be returned.
1010
+
1011
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1012
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1013
+ of shape `(batch_size, sequence_length)`.
1014
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1015
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1016
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1017
+ model's internal embedding lookup matrix.
1018
+ use_cache (`bool`, *optional*):
1019
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1020
+ `past_key_values`).
1021
+ output_attentions (`bool`, *optional*):
1022
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1023
+ tensors for more detail.
1024
+ output_hidden_states (`bool`, *optional*):
1025
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1026
+ more detail.
1027
+ return_dict (`bool`, *optional*):
1028
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1029
+ """
1030
+
1031
+
1032
+ @add_start_docstrings(
1033
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
1034
+ MINICPM_START_DOCSTRING,
1035
+ )
1036
+ class MiniCPMModel(MiniCPMPreTrainedModel):
1037
+ """
1038
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
1039
+
1040
+ Args:
1041
+ config: MiniCPMConfig
1042
+ """
1043
+
1044
+ def __init__(self, config: MiniCPMConfig):
1045
+ super().__init__(config)
1046
+ self.padding_idx = config.pad_token_id
1047
+ self.vocab_size = config.vocab_size
1048
+
1049
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1050
+ self.layers = nn.ModuleList(
1051
+ [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1052
+ )
1053
+ self._use_sdpa = config._attn_implementation == "sdpa"
1054
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1055
+
1056
+ self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1057
+
1058
+ self.gradient_checkpointing = False
1059
+ # Initialize weights and apply final processing
1060
+ self.post_init()
1061
+
1062
+ def get_input_embeddings(self):
1063
+ return self.embed_tokens
1064
+
1065
+ def set_input_embeddings(self, value):
1066
+ self.embed_tokens = value
1067
+
1068
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1069
+ def forward(
1070
+ self,
1071
+ input_ids: torch.LongTensor = None,
1072
+ attention_mask: Optional[torch.Tensor] = None,
1073
+ position_ids: Optional[torch.LongTensor] = None,
1074
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1075
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1076
+ use_cache: Optional[bool] = None,
1077
+ output_attentions: Optional[bool] = None,
1078
+ output_hidden_states: Optional[bool] = None,
1079
+ return_dict: Optional[bool] = None,
1080
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1081
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1082
+ output_hidden_states = (
1083
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1084
+ )
1085
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1086
+
1087
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1088
+
1089
+ # retrieve input_ids and inputs_embeds
1090
+ if input_ids is not None and inputs_embeds is not None:
1091
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1092
+ elif input_ids is not None:
1093
+ batch_size, seq_length = input_ids.shape[:2]
1094
+ elif inputs_embeds is not None:
1095
+ batch_size, seq_length = inputs_embeds.shape[:2]
1096
+ else:
1097
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1098
+
1099
+ if self.gradient_checkpointing and self.training:
1100
+ if use_cache:
1101
+ logger.warning_once(
1102
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1103
+ )
1104
+ use_cache = False
1105
+
1106
+ past_key_values_length = 0
1107
+ if use_cache:
1108
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1109
+ if use_legacy_cache:
1110
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1111
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1112
+
1113
+ if position_ids is None:
1114
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1115
+ position_ids = torch.arange(
1116
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1117
+ )
1118
+ position_ids = position_ids.unsqueeze(0)
1119
+
1120
+ if inputs_embeds is None:
1121
+ inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
1122
+
1123
+ if self._use_flash_attention_2:
1124
+ # 2d mask is passed through the layers
1125
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1126
+ elif self._use_sdpa and not output_attentions:
1127
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1128
+ # the manual implementation that requires a 4D causal mask in all cases.
1129
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1130
+ attention_mask,
1131
+ (batch_size, seq_length),
1132
+ inputs_embeds,
1133
+ past_key_values_length,
1134
+ )
1135
+ else:
1136
+ # 4d mask is passed through the layers
1137
+ attention_mask = _prepare_4d_causal_attention_mask(
1138
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1139
+ )
1140
+
1141
+ # embed positions
1142
+ hidden_states = inputs_embeds
1143
+
1144
+ # decoder layers
1145
+ all_hidden_states = () if output_hidden_states else None
1146
+ all_self_attns = () if output_attentions else None
1147
+ next_decoder_cache = None
1148
+
1149
+ for decoder_layer in self.layers:
1150
+ if output_hidden_states:
1151
+ all_hidden_states += (hidden_states,)
1152
+
1153
+ if self.gradient_checkpointing and self.training:
1154
+ layer_outputs = self._gradient_checkpointing_func(
1155
+ decoder_layer.__call__,
1156
+ hidden_states,
1157
+ attention_mask,
1158
+ position_ids,
1159
+ past_key_values,
1160
+ output_attentions,
1161
+ use_cache,
1162
+ )
1163
+ else:
1164
+ layer_outputs = decoder_layer(
1165
+ hidden_states,
1166
+ attention_mask=attention_mask,
1167
+ position_ids=position_ids,
1168
+ past_key_value=past_key_values,
1169
+ output_attentions=output_attentions,
1170
+ use_cache=use_cache,
1171
+ )
1172
+
1173
+ hidden_states = layer_outputs[0]
1174
+
1175
+ if use_cache:
1176
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1177
+
1178
+ if output_attentions:
1179
+ all_self_attns += (layer_outputs[1],)
1180
+
1181
+ hidden_states = self.norm(hidden_states)
1182
+
1183
+ # add hidden states from the last decoder layer
1184
+ if output_hidden_states:
1185
+ all_hidden_states += (hidden_states,)
1186
+
1187
+ next_cache = None
1188
+ if use_cache:
1189
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1190
+ if not return_dict:
1191
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1192
+ return BaseModelOutputWithPast(
1193
+ last_hidden_state=hidden_states,
1194
+ past_key_values=next_cache,
1195
+ hidden_states=all_hidden_states,
1196
+ attentions=all_self_attns,
1197
+ )
1198
+
1199
+
1200
+ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
1201
+ _tied_weights_keys = ["lm_head.weight"]
1202
+
1203
+ def __init__(self, config):
1204
+ super().__init__(config)
1205
+ self.model = MiniCPMModel(config)
1206
+ self.vocab_size = config.vocab_size
1207
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1208
+
1209
+ # Initialize weights and apply final processing
1210
+ self.post_init()
1211
+
1212
+ def get_input_embeddings(self):
1213
+ return self.model.embed_tokens
1214
+
1215
+ def set_input_embeddings(self, value):
1216
+ self.model.embed_tokens = value
1217
+
1218
+ def get_output_embeddings(self):
1219
+ return self.lm_head
1220
+
1221
+ def set_output_embeddings(self, new_embeddings):
1222
+ self.lm_head = new_embeddings
1223
+
1224
+ def set_decoder(self, decoder):
1225
+ self.model = decoder
1226
+
1227
+ def get_decoder(self):
1228
+ return self.model
1229
+
1230
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1231
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1232
+ def forward(
1233
+ self,
1234
+ input_ids: torch.LongTensor = None,
1235
+ attention_mask: Optional[torch.Tensor] = None,
1236
+ position_ids: Optional[torch.LongTensor] = None,
1237
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1238
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1239
+ labels: Optional[torch.LongTensor] = None,
1240
+ use_cache: Optional[bool] = None,
1241
+ output_attentions: Optional[bool] = None,
1242
+ output_hidden_states: Optional[bool] = None,
1243
+ return_dict: Optional[bool] = None,
1244
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1245
+ r"""
1246
+ Args:
1247
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1248
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1249
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1250
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1251
+
1252
+ Returns:
1253
+
1254
+ Example:
1255
+
1256
+ ```python
1257
+ >>> from transformers import AutoTokenizer, MiniCPMForCausalLM
1258
+
1259
+ >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1260
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1261
+
1262
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1263
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1264
+
1265
+ >>> # Generate
1266
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1267
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1268
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1269
+ ```"""
1270
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1271
+ output_hidden_states = (
1272
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1273
+ )
1274
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1275
+
1276
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1277
+ outputs = self.model(
1278
+ input_ids=input_ids,
1279
+ attention_mask=attention_mask,
1280
+ position_ids=position_ids,
1281
+ past_key_values=past_key_values,
1282
+ inputs_embeds=inputs_embeds,
1283
+ use_cache=use_cache,
1284
+ output_attentions=output_attentions,
1285
+ output_hidden_states=output_hidden_states,
1286
+ return_dict=return_dict,
1287
+ )
1288
+
1289
+ hidden_states = outputs[0]
1290
+ if self.config.pretraining_tp > 1:
1291
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1292
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1293
+ logits = torch.cat(logits, dim=-1)
1294
+ else:
1295
+ logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base))
1296
+ logits = logits.float()
1297
+
1298
+ loss = None
1299
+ if labels is not None:
1300
+ # Shift so that tokens < n predict n
1301
+ shift_logits = logits[..., :-1, :].contiguous()
1302
+ shift_labels = labels[..., 1:].contiguous()
1303
+ # Flatten the tokens
1304
+ loss_fct = CrossEntropyLoss()
1305
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1306
+ shift_labels = shift_labels.view(-1)
1307
+ # Enable model parallelism
1308
+ shift_labels = shift_labels.to(shift_logits.device)
1309
+ loss = loss_fct(shift_logits, shift_labels)
1310
+
1311
+ if not return_dict:
1312
+ output = (logits,) + outputs[1:]
1313
+ return (loss,) + output if loss is not None else output
1314
+
1315
+ return CausalLMOutputWithPast(
1316
+ loss=loss,
1317
+ logits=logits,
1318
+ past_key_values=outputs.past_key_values,
1319
+ hidden_states=outputs.hidden_states,
1320
+ attentions=outputs.attentions,
1321
+ )
1322
+
1323
+ def prepare_inputs_for_generation(
1324
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1325
+ ):
1326
+ if past_key_values is not None:
1327
+ if isinstance(past_key_values, Cache):
1328
+ cache_length = past_key_values.get_seq_length()
1329
+ past_length = past_key_values.seen_tokens
1330
+ max_cache_length = past_key_values.get_max_length()
1331
+ else:
1332
+ cache_length = past_length = past_key_values[0][0].shape[2]
1333
+ max_cache_length = None
1334
+
1335
+ # Keep only the unprocessed tokens:
1336
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1337
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1338
+ # input)
1339
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1340
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1341
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1342
+ # input_ids based on the past_length.
1343
+ elif past_length < input_ids.shape[1]:
1344
+ input_ids = input_ids[:, past_length:]
1345
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1346
+
1347
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1348
+ if (
1349
+ max_cache_length is not None
1350
+ and attention_mask is not None
1351
+ and cache_length + input_ids.shape[1] > max_cache_length
1352
+ ):
1353
+ attention_mask = attention_mask[:, -max_cache_length:]
1354
+
1355
+ position_ids = kwargs.get("position_ids", None)
1356
+ if attention_mask is not None and position_ids is None:
1357
+ # create position_ids on the fly for batch generation
1358
+ position_ids = attention_mask.long().cumsum(-1) - 1
1359
+ position_ids.masked_fill_(attention_mask == 0, 1)
1360
+ if past_key_values:
1361
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1362
+
1363
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1364
+ if inputs_embeds is not None and past_key_values is None:
1365
+ model_inputs = {"inputs_embeds": inputs_embeds}
1366
+ else:
1367
+ model_inputs = {"input_ids": input_ids}
1368
+
1369
+ model_inputs.update(
1370
+ {
1371
+ "position_ids": position_ids,
1372
+ "past_key_values": past_key_values,
1373
+ "use_cache": kwargs.get("use_cache"),
1374
+ "attention_mask": attention_mask,
1375
+ }
1376
+ )
1377
+ return model_inputs
1378
+
1379
+ @staticmethod
1380
+ def _reorder_cache(past_key_values, beam_idx):
1381
+ reordered_past = ()
1382
+ for layer_past in past_key_values:
1383
+ reordered_past += (
1384
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1385
+ )
1386
+ return reordered_past
1387
+
1388
+ @torch.inference_mode()
1389
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1390
+ max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
1391
+ **kwargs):
1392
+ if history is None:
1393
+ history = []
1394
+ if logits_processor:
1395
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1396
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1397
+ else:
1398
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1399
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1400
+
1401
+ history.append({"role": role, "content": query})
1402
+ history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
1403
+ inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
1404
+ outputs = self.generate(**inputs, **gen_kwargs)
1405
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1406
+ response = tokenizer.decode(outputs)
1407
+ pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
1408
+ matches = pattern.findall(response)
1409
+ if len(matches) > 0:
1410
+ response = matches[0]
1411
+ history.append({"role": "assistant", "content": response})
1412
+ return response, history
1413
+
1414
+
1415
+ @add_start_docstrings(
1416
+ """
1417
+ The MiniCPM Model transformer with a sequence classification head on top (linear layer).
1418
+
1419
+ [`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1420
+ (e.g. GPT-2) do.
1421
+
1422
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1423
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1424
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1425
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1426
+ each row of the batch).
1427
+ """,
1428
+ MINICPM_START_DOCSTRING,
1429
+ )
1430
+ class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
1431
+ def __init__(self, config):
1432
+ super().__init__(config)
1433
+ self.num_labels = config.num_labels
1434
+ self.model = MiniCPMModel(config)
1435
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1436
+
1437
+ # Initialize weights and apply final processing
1438
+ self.post_init()
1439
+
1440
+ def get_input_embeddings(self):
1441
+ return self.model.embed_tokens
1442
+
1443
+ def set_input_embeddings(self, value):
1444
+ self.model.embed_tokens = value
1445
+
1446
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1447
+ def forward(
1448
+ self,
1449
+ input_ids: torch.LongTensor = None,
1450
+ attention_mask: Optional[torch.Tensor] = None,
1451
+ position_ids: Optional[torch.LongTensor] = None,
1452
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1453
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1454
+ labels: Optional[torch.LongTensor] = None,
1455
+ use_cache: Optional[bool] = None,
1456
+ output_attentions: Optional[bool] = None,
1457
+ output_hidden_states: Optional[bool] = None,
1458
+ return_dict: Optional[bool] = None,
1459
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1460
+ r"""
1461
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1462
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1463
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1464
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1465
+ """
1466
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1467
+
1468
+ transformer_outputs = self.model(
1469
+ input_ids,
1470
+ attention_mask=attention_mask,
1471
+ position_ids=position_ids,
1472
+ past_key_values=past_key_values,
1473
+ inputs_embeds=inputs_embeds,
1474
+ use_cache=use_cache,
1475
+ output_attentions=output_attentions,
1476
+ output_hidden_states=output_hidden_states,
1477
+ return_dict=return_dict,
1478
+ )
1479
+ hidden_states = transformer_outputs[0]
1480
+ logits = self.score(hidden_states)
1481
+
1482
+ if input_ids is not None:
1483
+ batch_size = input_ids.shape[0]
1484
+ else:
1485
+ batch_size = inputs_embeds.shape[0]
1486
+
1487
+ if self.config.pad_token_id is None and batch_size != 1:
1488
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1489
+ if self.config.pad_token_id is None:
1490
+ sequence_lengths = -1
1491
+ else:
1492
+ if input_ids is not None:
1493
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1494
+ logits.device
1495
+ )
1496
+ else:
1497
+ sequence_lengths = -1
1498
+
1499
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1500
+
1501
+ loss = None
1502
+ if labels is not None:
1503
+ labels = labels.to(logits.device)
1504
+ if self.config.problem_type is None:
1505
+ if self.num_labels == 1:
1506
+ self.config.problem_type = "regression"
1507
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1508
+ self.config.problem_type = "single_label_classification"
1509
+ else:
1510
+ self.config.problem_type = "multi_label_classification"
1511
+
1512
+ if self.config.problem_type == "regression":
1513
+ loss_fct = MSELoss()
1514
+ if self.num_labels == 1:
1515
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1516
+ else:
1517
+ loss = loss_fct(pooled_logits, labels)
1518
+ elif self.config.problem_type == "single_label_classification":
1519
+ loss_fct = CrossEntropyLoss()
1520
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1521
+ elif self.config.problem_type == "multi_label_classification":
1522
+ loss_fct = BCEWithLogitsLoss()
1523
+ loss = loss_fct(pooled_logits, labels)
1524
+ if not return_dict:
1525
+ output = (pooled_logits,) + transformer_outputs[1:]
1526
+ return ((loss,) + output) if loss is not None else output
1527
+
1528
+ return SequenceClassifierOutputWithPast(
1529
+ loss=loss,
1530
+ logits=pooled_logits,
1531
+ past_key_values=transformer_outputs.past_key_values,
1532
+ hidden_states=transformer_outputs.hidden_states,
1533
+ attentions=transformer_outputs.attentions,
1534
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2db5c4d8fb618c201e77a73249a285ea948eab836113dbd5f818db81b78d3df
3
+ size 27747001948
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9aafcd7da1f5611dab6be545db74d5552a2ccc9c2a12c72ea7be63aac4a25d7
3
+ size 1994871
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": true,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": null,
36
+ "sp_model_kwargs": {},
37
+ "spaces_between_special_tokens": false,
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "unk_token": "<unk>",
40
+ "use_default_system_prompt": false,
41
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}"
42
+ }