---
language:
- zh
- en
base_model: openbmb/MiniCPM-2B-sft-bf16
pipeline_tag: text-classification
library_name: transformers
---
## MiniCPM-Reranker
**MiniCPM-Reranker** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本重排序模型,有如下特点:
- 出色的中文、英文重排序能力。
- 出色的中英跨语言重排序能力。
MiniCPM-Reranker 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。
欢迎关注 RAG 套件系列:
- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
**MiniCPM-Reranker** is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:
- Exceptional Chinese and English re-ranking capabilities.
- Outstanding cross-lingual re-ranking capabilities between Chinese and English.
MiniCPM-Reranker is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
We also invite you to explore the RAG toolkit series:
- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
## 模型信息 Model Information
- 模型大小:2.4B
- 最大输入token数:1024
- Model Size: 2.4B
- Max Input Tokens: 1024
## 使用方法 Usage
### 输入格式 Input Format
本模型支持指令,输入格式如下:
MiniCPM-Reranker supports instructions in the following format:
```
Instruction: {{ instruction }} Query: {{ query }}{{ document }}
```
例如:
For example:
```
Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?(文档省略)
```
```
Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.(document omitted)
```
也可以不提供指令,即采取如下格式:
MiniCPM-Reranker also works in instruction-free mode in the following format:
```
Query: {{ query }}{{ document }}
```
我们在BEIR与C-MTEB/Retrieval上测试时使用的指令见 `instructions.json`,其他测试不使用指令。
When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions.
### 环境要求 Requirements
```
transformers==4.37.2
flash-attn>2.3.5
```
### 示例脚本 Demo
#### Huggingface Transformers
```python
from transformers import AutoModel, LlamaTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
def build_inputs_with_special_tokens(
self, token_ids_0, token_ids_1 = None
):
"""
- single sequence: ` X `
- pair of sequences: ` A B`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return super().build_inputs_with_special_tokens(token_ids_0)
bos = [self.bos_token_id]
sep = [self.eos_token_id]
return bos + token_ids_0 + sep + token_ids_1
model_name = "openbmb/MiniCPM-Reranker"
tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.padding_side = "right"
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()
@torch.no_grad()
def rerank(input_query, input_docs):
tokenized_inputs = tokenizer([[input_query, input_doc] for input_doc in input_docs], return_tensors="pt", padding=True, truncation=True, max_length=1024)
for k in tokenized_inputs:
tokenized_inputs [k] = tokenized_inputs[k].to("cuda")
outputs = model(**tokenized_inputs)
score = outputs.logits
return score.float().detach().cpu().numpy()
queries = ["中国的首都是哪里?"]
passages = [["beijing", "shanghai"]]
INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]
scores = []
for i in range(len(queries)):
print(queries[i])
scores.append(rerank(queries[i],passages[i]))
print(np.array(scores)) # [[[-4.7460938][-8.8515625]]]
```
#### Sentence Transformer
```python
from sentence_transformers import CrossEncoder
from transformers import LlamaTokenizer
import torch
# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
def build_inputs_with_special_tokens(
self, token_ids_0, token_ids_1 = None
):
"""
- single sequence: ` X `
- pair of sequences: ` A B`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return super().build_inputs_with_special_tokens(token_ids_0)
bos = [self.bos_token_id]
sep = [self.eos_token_id]
return bos + token_ids_0 + sep + token_ids_1
model_name = "openbmb/MiniCPM-Reranker"
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
model.tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
model.tokenizer.padding_side = "right"
query = "中国的首都是哪里?"
passages = [["beijing", "shanghai"]]
INSTRUCTION = "Query: "
query = INSTRUCTION + query
sentence_pairs = [[query, doc] for doc in passages]
scores = model.predict(sentence_pairs, convert_to_tensor=True).tolist()
rankings = model.rank(query, passages, return_documents=True, convert_to_tensor=True)
print(scores) # [0.0087432861328125, 0.00020503997802734375]
for ranking in rankings:
print(f"Score: {ranking['score']:.4f}, Corpus: {ranking['text']}")
# ID: 0, Score: 0.0087, Text: beijing
# ID: 1, Score: 0.0002, Text: shanghai
```
## 实验结果 Evaluation Results
### 中文与英文重排序结果 CN/EN Re-ranking Results
中文对`bge-large-zh-v1.5`检索的top-100进行重排,英文对`bge-large-en-v1.5`检索的top-100进行重排。
We re-rank top-100 docments from `bge-large-zh-v1.5` in C-MTEB/Retrieval and from `bge-large-en-v1.5` in BEIR.
| 模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) |
|----------------------------|-------------------|---------------|
| bge-large-zh-v1.5(Retriever for Chinese) | 70.46 | - |
| bge-large-en-v1.5(Retriever for English) | - | 54.29 |
| bge-reranker-v2-m3 | 71.82 | 55.36 |
| bge-reranker-v2-minicpm-28 | 73.51 | 59.86 |
| bge-reranker-v2-gemma | 71.74 | 60.71 |
| bge-reranker-v2.5-gemma2 | - | **63.67** |
| MiniCPM-Reranker | **76.79** | 61.32 |
### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
对bge-m3(Dense)检索的top100进行重排。
We re-rank top-100 documents from `bge-m3` (Dense).
| 模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) |
|------------------------------------|--------------------|--------------------|--------------------|
| bge-m3 (Dense)(Retriever) | 66.4 | 30.49 | 41.09 |
| jina-reranker-v2-base-multilingual | 69.33 | 36.66 | 50.03 |
| bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
| gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
| MiniCPM-Reranker | **71.73** | **43.65** | **50.59** |
## 许可证 License
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
- MiniCPM-Reranker 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
- MiniCPM-Reranker 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-Reranker model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM-Reranker are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Reranker weights are also available for free commercial use.