Push model using huggingface_hub.
Browse files- README.md +57 -0
- config.json +1 -1
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: mit
|
4 |
+
library_name: pytorch
|
5 |
---
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# PVNet2
|
13 |
+
|
14 |
+
## Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is/does. -->
|
17 |
+
This model class uses satellite data, numericl weather predictions, and recent Grid Service Point( GSP) PV power output to forecast the near-term (~8 hours) PV power output at all GSPs. More information can be found in the model repo [1] and experimental notes in [this google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing).
|
18 |
+
|
19 |
+
- **Developed by:** openclimatefix
|
20 |
+
- **Model type:** Fusion model
|
21 |
+
- **Language(s) (NLP):** en
|
22 |
+
- **License:** mit
|
23 |
+
|
24 |
+
|
25 |
+
# Training Details
|
26 |
+
|
27 |
+
## Data
|
28 |
+
|
29 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
30 |
+
|
31 |
+
The model is trained on data from 2017-2020 and validated on data from 2021. See experimental notes in the [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing) for more details.
|
32 |
+
|
33 |
+
|
34 |
+
## Training Procedure
|
35 |
+
|
36 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
37 |
+
|
38 |
+
### Preprocessing
|
39 |
+
|
40 |
+
Data is prepared with the `ocf_datapipes.training.pvnet` datapipe [2].
|
41 |
+
|
42 |
+
|
43 |
+
## Results
|
44 |
+
|
45 |
+
The training logs for the current model can be found [here on wandb](#https://wandb.ai/openclimatefix/pvnet2.1/runs/None).
|
46 |
+
|
47 |
+
The training logs for all model runs of PVNet2 can be found [here](#https://wandb.ai/openclimatefix/pvnet2.1).
|
48 |
+
|
49 |
+
Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
|
50 |
+
|
51 |
+
|
52 |
+
### Hardware
|
53 |
+
|
54 |
+
Trained on a single NVIDIA Tesla T4
|
55 |
+
|
56 |
+
### Software
|
57 |
+
|
58 |
+
- [1] https://github.com/openclimatefix/PVNet
|
59 |
+
- [2] https://github.com/openclimatefix/ocf_datapipes
|
60 |
+
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"_target_": "pvnet.models.multimodal.multimodal.Model", "image_encoder": {"_target_": "pvnet.models.multimodal.encoders.encoders3d.DefaultPVNet", "_partial_": true}, "encoder_out_features": 256, "encoder_kwargs": {"number_of_conv3d_layers": 6, "conv3d_channels": 32}, "include_sat": true, "include_nwp": true, "add_image_embedding_channel": true, "sat_image_size_pixels": 24, "nwp_image_size_pixels": 24, "number_sat_channels": 11, "number_nwp_channels": 2, "output_network": {"_target_": "pvnet.models.multimodal.linear_networks.networks.ResFCNet2", "_partial_": true}, "output_network_kwargs": {"fc_hidden_features": 128, "n_res_blocks": 6, "res_block_layers": 2, "dropout_frac": 0.0}, "embedding_dim": 16, "include_sun": true, "include_gsp_yield_history": false, "forecast_minutes": 480, "history_minutes": 120, "sat_history_minutes": 90, "nwp_history_minutes": 120, "nwp_forecast_minutes": 480, "optimizer": {"_target_": "pvnet.optimizers.AdamWReduceLROnPlateau", "lr": 0.0001, "weight_decay": 0.25, "amsgrad": true, "patience": 5, "factor": 0.1, "threshold": 0.002}}
|
|
|
1 |
+
{"_target_": "pvnet.models.multimodal.multimodal.Model", "image_encoder": {"_target_": "pvnet.models.multimodal.encoders.encoders3d.DefaultPVNet", "_partial_": true}, "encoder_out_features": 256, "encoder_kwargs": {"number_of_conv3d_layers": 6, "conv3d_channels": 32}, "include_sat": true, "include_nwp": true, "add_image_embedding_channel": true, "sat_image_size_pixels": 24, "nwp_image_size_pixels": 24, "number_sat_channels": 11, "number_nwp_channels": 2, "output_network": {"_target_": "pvnet.models.multimodal.linear_networks.networks.ResFCNet2", "_partial_": true}, "output_network_kwargs": {"fc_hidden_features": 128, "n_res_blocks": 6, "res_block_layers": 2, "dropout_frac": 0.0}, "embedding_dim": 16, "include_sun": true, "include_gsp_yield_history": false, "forecast_minutes": 480, "history_minutes": 120, "sat_history_minutes": 90, "nwp_history_minutes": 120, "nwp_forecast_minutes": 480, "optimizer": {"_target_": "pvnet.optimizers.AdamWReduceLROnPlateau", "lr": 0.0001, "weight_decay": 0.25, "amsgrad": true, "patience": 5, "factor": 0.1, "threshold": 0.002}, "min_sat_delay_minutes": 30}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11ba23e57bab690bf39a89ad38c203811094989f8d79f1e1285b110c51b30865
|
3 |
+
size 60685313
|