TomPei commited on
Commit
772392d
·
verified ·
1 Parent(s): 1bd3944

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -21
README.md CHANGED
@@ -23,16 +23,9 @@ The vision of OpenCSG is to empower every industry, every company, and every ind
23
  ## Model Description
24
 
25
  The [StarCoder](https://huggingface.co/bigcode/starcoder) models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded.
 
26
  <br>
27
 
28
- This is the repository for the base 7B version finetuned based on [CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf).
29
-
30
- | Model Size | Base Model |
31
- | --- | ----------------------------------------------------------------------------- |
32
- | 7B | [opencsg/Opencsg-CodeLlama-7b-v0.1](https://huggingface.co/opencsg/opencsg-CodeLlama-7b-v0.1) |
33
- | 13B | [opencsg/Opencsg-CodeLlama-13b-v0.1](https://huggingface.co/opencsg/opencsg-CodeLlama-13b-v0.1) |
34
- | 34B | [opencsg/Opencsg-CodeLlama-34b-v0.1](https://huggingface.co/opencsg/opencsg-CodeLlama-34b-v0.1) |
35
-
36
 
37
  ## Model Eval
38
 
@@ -43,18 +36,14 @@ It is impratical for us to manually set specific configuration for each fine-tun
43
  Thus, OpenCSG strained our brains to provide a relatively fair method to compare the fine-tuned models on HumanEval benchmark.
44
  To simplify the comparision, we chosed the Pass@1 metric on python language, but our finetuning dataset includes samples in multi language.
45
 
46
- **For fair, we evaluated the fine-tuned and origin codellama models only with the original cases' prompts, not including any other instruction else.**
47
 
48
  **Otherwise, we use greedy decoding method for each model during the evaluation.**
49
 
50
  | Model | HumanEval python pass@1 |
51
  | --- |----------------------------------------------------------------------------- |
52
- | CodeLlama-7b-hf | 30.5%|
53
- | opencsg-CodeLlama-7b-v0.1(4k) | **42.7%** |
54
- | CodeLlama-13b-hf | 36.0%|
55
- | opencsg-CodeLlama-13b-v0.1(4k) | **45.1%** |
56
- | CodeLlama-34b-hf | 48.2%|
57
- | opencsg-CodeLlama-34b-v0.1(4k)| **48.8%** |
58
 
59
  **TODO**
60
  - we will provide much more benchmark scores on fine-tuned models in future.
@@ -70,7 +59,7 @@ from transformers import AutoTokenizer
70
  import transformers
71
  import torch
72
 
73
- model = "opencsg/opencsg-CodeLlama-7b-v0.1"
74
 
75
  tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
76
  pipeline = transformers.pipeline(
@@ -107,14 +96,10 @@ for seq in sequences:
107
  ```
108
  # Training
109
 
110
- ## Basic Model
111
-
112
- [codellama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf)
113
-
114
  ## Hardware
115
 
116
  - **GPUs:** 8 Tesla A800
117
- - **Training time:** 4 hours
118
 
119
  ## Software
120
 
 
23
  ## Model Description
24
 
25
  The [StarCoder](https://huggingface.co/bigcode/starcoder) models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded.
26
+ Based on StarCoder, opencsg-starcoder-v0.1 was fintuned by OpenCSG LLM Research Team througth full-paramters fine-tuning method.
27
  <br>
28
 
 
 
 
 
 
 
 
 
29
 
30
  ## Model Eval
31
 
 
36
  Thus, OpenCSG strained our brains to provide a relatively fair method to compare the fine-tuned models on HumanEval benchmark.
37
  To simplify the comparision, we chosed the Pass@1 metric on python language, but our finetuning dataset includes samples in multi language.
38
 
39
+ **For fair, we evaluated the fine-tuned and origin starcoder models only with the original cases' prompts, not including any other instruction else.**
40
 
41
  **Otherwise, we use greedy decoding method for each model during the evaluation.**
42
 
43
  | Model | HumanEval python pass@1 |
44
  | --- |----------------------------------------------------------------------------- |
45
+ | starcoder | 35.98%|
46
+ | opencsg-starcoder-v0.1| **39.02%** |
 
 
 
 
47
 
48
  **TODO**
49
  - we will provide much more benchmark scores on fine-tuned models in future.
 
59
  import transformers
60
  import torch
61
 
62
+ model = "opencsg/opencsg-starcoder-v0.1"
63
 
64
  tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
65
  pipeline = transformers.pipeline(
 
96
  ```
97
  # Training
98
 
 
 
 
 
99
  ## Hardware
100
 
101
  - **GPUs:** 8 Tesla A800
102
+ - **Training time:** 7 hours
103
 
104
  ## Software
105