File size: 21,627 Bytes
b85ef44
 
 
 
 
7b686d4
 
b85ef44
 
 
 
 
 
 
7b686d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef44
 
8b7b797
b85ef44
 
7b686d4
72b8226
 
b85ef44
7b686d4
 
 
 
 
8b7b797
 
 
72b8226
 
 
 
 
 
 
 
 
 
 
8b7b797
 
 
72b8226
8b7b797
 
b85ef44
72b8226
b85ef44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7b797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b85ef44
 
 
 
 
8b7b797
b85ef44
8b7b797
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-large
tags:
- generated_from_trainer
datasets:
- openfoodfacts/nutrient-detection-layout
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nutrition-extractor
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: openfoodfacts/nutrient-detection-layout
      type: openfoodfacts/nutrient-detection-layout
    metrics:
    - name: Precision
      type: precision
      value: 0.9545036764705882
    - name: Recall
      type: recall
      value: 0.9647004180213655
    - name: F1
      type: f1
      value: 0.9595749595749595
    - name: Accuracy
      type: accuracy
      value: 0.9916725247390905
---


# nutrition-extractor

This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on the openfoodfacts/nutrient-detection-layout dataset.
It allows to automatically extract nutrition values from images of nutrition tables.

It achieves the following results on the evaluation set:
- Loss: 0.0534
- Precision: 0.9545
- Recall: 0.9647
- F1: 0.9596
- Accuracy: 0.9917

## Model description

This model can extract nutrient values from nutrition tables. This was developped as part of the Nutrisight project.

For more information about the project, please refer to the [nutrisight](https://github.com/openfoodfacts/openfoodfacts-ai/tree/develop/nutrisight) directory in the openfoodfacts-ai GitHub repository.

As any model using the LayoutLM architecture, this model expects as input:

- the image
- the tokens (string) on the images
- the 2D coordinates of each tokens

The tokens and their 2D position is provided by an OCR model. This model was trained using OCR results coming from Google Cloud Vision.

## Intended uses & limitations

This model is only intended to be used on images of products where a nutrition table can be found.

## Training and evaluation data

The training and evaluation data can be found on the [dataset page](https://huggingface.co/datasets/openfoodfacts/nutrient-detection-layout).

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.9852        | 0.1664  | 15   | 1.1500          | 0.0       | 0.0    | 0.0    | 0.8101   |
| 1.0244        | 0.3329  | 30   | 0.8342          | 0.05      | 0.0074 | 0.0129 | 0.8123   |
| 0.7826        | 0.4993  | 45   | 0.6795          | 0.0789    | 0.1138 | 0.0932 | 0.8479   |
| 0.6767        | 0.6657  | 60   | 0.5963          | 0.1193    | 0.1644 | 0.1383 | 0.8578   |
| 0.6031        | 0.8322  | 75   | 0.5406          | 0.1671    | 0.2248 | 0.1917 | 0.8691   |
| 0.5756        | 0.9986  | 90   | 0.4935          | 0.2291    | 0.3112 | 0.2639 | 0.8778   |
| 0.5215        | 1.1650  | 105  | 0.4302          | 0.3267    | 0.3948 | 0.3575 | 0.8905   |
| 0.4782        | 1.3315  | 120  | 0.3782          | 0.3939    | 0.4654 | 0.4267 | 0.9020   |
| 0.4208        | 1.4979  | 135  | 0.3405          | 0.4027    | 0.5044 | 0.4478 | 0.9081   |
| 0.3532        | 1.6644  | 150  | 0.2930          | 0.4960    | 0.5820 | 0.5356 | 0.9252   |
| 0.3458        | 1.8308  | 165  | 0.2658          | 0.5155    | 0.6033 | 0.5560 | 0.9301   |
| 0.302         | 1.9972  | 180  | 0.2321          | 0.6112    | 0.7009 | 0.6530 | 0.9474   |
| 0.2655        | 2.1637  | 195  | 0.2093          | 0.6471    | 0.7264 | 0.6845 | 0.9520   |
| 0.2598        | 2.3301  | 210  | 0.1951          | 0.7013    | 0.7557 | 0.7275 | 0.9570   |
| 0.2364        | 2.4965  | 225  | 0.1794          | 0.7091    | 0.7743 | 0.7402 | 0.9590   |
| 0.2218        | 2.6630  | 240  | 0.1676          | 0.7216    | 0.7933 | 0.7558 | 0.9621   |
| 0.206         | 2.8294  | 255  | 0.1572          | 0.7436    | 0.8110 | 0.7758 | 0.9650   |
| 0.2053        | 2.9958  | 270  | 0.1580          | 0.7381    | 0.8114 | 0.7730 | 0.9640   |
| 0.1876        | 3.1623  | 285  | 0.1406          | 0.7738    | 0.8309 | 0.8013 | 0.9687   |
| 0.1602        | 3.3287  | 300  | 0.1420          | 0.7714    | 0.8277 | 0.7986 | 0.9671   |
| 0.1706        | 3.4951  | 315  | 0.1323          | 0.7933    | 0.8379 | 0.8150 | 0.9691   |
| 0.1585        | 3.6616  | 330  | 0.1313          | 0.8060    | 0.8551 | 0.8298 | 0.9700   |
| 0.1574        | 3.8280  | 345  | 0.1267          | 0.8129    | 0.8639 | 0.8376 | 0.9717   |
| 0.15          | 3.9945  | 360  | 0.1157          | 0.8336    | 0.8746 | 0.8536 | 0.9754   |
| 0.1192        | 4.1609  | 375  | 0.1120          | 0.8348    | 0.8709 | 0.8525 | 0.9741   |
| 0.1313        | 4.3273  | 390  | 0.1130          | 0.8395    | 0.8792 | 0.8589 | 0.9745   |
| 0.1179        | 4.4938  | 405  | 0.1093          | 0.8370    | 0.8871 | 0.8613 | 0.9755   |
| 0.1327        | 4.6602  | 420  | 0.1102          | 0.8400    | 0.8853 | 0.8621 | 0.9746   |
| 0.1323        | 4.8266  | 435  | 0.0997          | 0.8611    | 0.8987 | 0.8795 | 0.9782   |
| 0.1254        | 4.9931  | 450  | 0.0949          | 0.8499    | 0.8969 | 0.8728 | 0.9775   |
| 0.0999        | 5.1595  | 465  | 0.0847          | 0.8658    | 0.8992 | 0.8822 | 0.9797   |
| 0.1017        | 5.3259  | 480  | 0.0803          | 0.8747    | 0.9108 | 0.8924 | 0.9810   |
| 0.091         | 5.4924  | 495  | 0.0796          | 0.8784    | 0.9057 | 0.8918 | 0.9806   |
| 0.0979        | 5.6588  | 510  | 0.0943          | 0.8607    | 0.8950 | 0.8775 | 0.9773   |
| 0.1024        | 5.8252  | 525  | 0.0804          | 0.8710    | 0.9062 | 0.8882 | 0.9805   |
| 0.0952        | 5.9917  | 540  | 0.0787          | 0.8845    | 0.9178 | 0.9008 | 0.9816   |
| 0.0742        | 6.1581  | 555  | 0.0776          | 0.8918    | 0.9150 | 0.9033 | 0.9823   |
| 0.0764        | 6.3245  | 570  | 0.0721          | 0.9028    | 0.9187 | 0.9107 | 0.9837   |
| 0.0813        | 6.4910  | 585  | 0.0664          | 0.9065    | 0.9229 | 0.9146 | 0.9844   |
| 0.0791        | 6.6574  | 600  | 0.0642          | 0.9026    | 0.9252 | 0.9138 | 0.9848   |
| 0.0792        | 6.8239  | 615  | 0.0673          | 0.8964    | 0.9248 | 0.9104 | 0.9841   |
| 0.078         | 6.9903  | 630  | 0.0693          | 0.8938    | 0.9224 | 0.9079 | 0.9833   |
| 0.0678        | 7.1567  | 645  | 0.0672          | 0.9082    | 0.9327 | 0.9203 | 0.9852   |
| 0.0685        | 7.3232  | 660  | 0.0655          | 0.8926    | 0.9224 | 0.9073 | 0.9840   |
| 0.0555        | 7.4896  | 675  | 0.0615          | 0.9156    | 0.9271 | 0.9213 | 0.9856   |
| 0.07          | 7.6560  | 690  | 0.0587          | 0.9173    | 0.9373 | 0.9272 | 0.9868   |
| 0.065         | 7.8225  | 705  | 0.0558          | 0.9205    | 0.9405 | 0.9304 | 0.9875   |
| 0.0599        | 7.9889  | 720  | 0.0579          | 0.9253    | 0.9433 | 0.9342 | 0.9878   |
| 0.0571        | 8.1553  | 735  | 0.0593          | 0.9148    | 0.9331 | 0.9239 | 0.9866   |
| 0.0563        | 8.3218  | 750  | 0.0605          | 0.9152    | 0.9322 | 0.9236 | 0.9863   |
| 0.0602        | 8.4882  | 765  | 0.0581          | 0.9252    | 0.9308 | 0.9280 | 0.9863   |
| 0.0582        | 8.6546  | 780  | 0.0581          | 0.9206    | 0.9373 | 0.9289 | 0.9872   |
| 0.0514        | 8.8211  | 795  | 0.0557          | 0.9245    | 0.9382 | 0.9313 | 0.9873   |
| 0.0467        | 8.9875  | 810  | 0.0520          | 0.9291    | 0.9498 | 0.9394 | 0.9883   |
| 0.0435        | 9.1540  | 825  | 0.0526          | 0.9229    | 0.9447 | 0.9337 | 0.9880   |
| 0.0531        | 9.3204  | 840  | 0.0502          | 0.9249    | 0.9443 | 0.9345 | 0.9884   |
| 0.0502        | 9.4868  | 855  | 0.0545          | 0.9171    | 0.9452 | 0.9309 | 0.9874   |
| 0.0377        | 9.6533  | 870  | 0.0618          | 0.9077    | 0.9368 | 0.9221 | 0.9851   |
| 0.0416        | 9.8197  | 885  | 0.0549          | 0.9267    | 0.9392 | 0.9329 | 0.9881   |
| 0.044         | 9.9861  | 900  | 0.0529          | 0.9366    | 0.9475 | 0.9420 | 0.9884   |
| 0.0383        | 10.1526 | 915  | 0.0490          | 0.9332    | 0.9475 | 0.9403 | 0.9889   |
| 0.0454        | 10.3190 | 930  | 0.0507          | 0.9264    | 0.9471 | 0.9366 | 0.9885   |
| 0.0416        | 10.4854 | 945  | 0.0467          | 0.9364    | 0.9498 | 0.9430 | 0.9891   |
| 0.0403        | 10.6519 | 960  | 0.0499          | 0.9314    | 0.9457 | 0.9385 | 0.9886   |
| 0.0354        | 10.8183 | 975  | 0.0523          | 0.9258    | 0.9452 | 0.9354 | 0.9883   |
| 0.0338        | 10.9847 | 990  | 0.0521          | 0.9214    | 0.9424 | 0.9318 | 0.9880   |
| 0.0347        | 11.1512 | 1005 | 0.0539          | 0.9235    | 0.9475 | 0.9354 | 0.9880   |
| 0.0364        | 11.3176 | 1020 | 0.0560          | 0.9194    | 0.9480 | 0.9335 | 0.9871   |
| 0.0363        | 11.4840 | 1035 | 0.0509          | 0.9286    | 0.9480 | 0.9382 | 0.9889   |
| 0.0308        | 11.6505 | 1050 | 0.0498          | 0.9389    | 0.9484 | 0.9436 | 0.9893   |
| 0.032         | 11.8169 | 1065 | 0.0491          | 0.9364    | 0.9443 | 0.9403 | 0.9891   |
| 0.0331        | 11.9834 | 1080 | 0.0455          | 0.9373    | 0.9443 | 0.9408 | 0.9892   |
| 0.0301        | 12.1498 | 1095 | 0.0486          | 0.9359    | 0.9489 | 0.9423 | 0.9892   |
| 0.0308        | 12.3162 | 1110 | 0.0513          | 0.9325    | 0.9503 | 0.9413 | 0.9891   |
| 0.0253        | 12.4827 | 1125 | 0.0510          | 0.9296    | 0.9503 | 0.9398 | 0.9892   |
| 0.0301        | 12.6491 | 1140 | 0.0533          | 0.9308    | 0.9489 | 0.9397 | 0.9886   |
| 0.0328        | 12.8155 | 1155 | 0.0549          | 0.9287    | 0.9443 | 0.9364 | 0.9885   |
| 0.0298        | 12.9820 | 1170 | 0.0504          | 0.9402    | 0.9498 | 0.9450 | 0.9895   |
| 0.0256        | 13.1484 | 1185 | 0.0515          | 0.9354    | 0.9419 | 0.9387 | 0.9888   |
| 0.0313        | 13.3148 | 1200 | 0.0483          | 0.9418    | 0.9545 | 0.9481 | 0.9905   |
| 0.022         | 13.4813 | 1215 | 0.0463          | 0.9361    | 0.9531 | 0.9445 | 0.9899   |
| 0.0245        | 13.6477 | 1230 | 0.0494          | 0.9368    | 0.9494 | 0.9430 | 0.9893   |
| 0.0251        | 13.8141 | 1245 | 0.0493          | 0.9404    | 0.9531 | 0.9467 | 0.9898   |
| 0.0259        | 13.9806 | 1260 | 0.0511          | 0.9386    | 0.9522 | 0.9454 | 0.9895   |
| 0.03          | 14.1470 | 1275 | 0.0535          | 0.9344    | 0.9457 | 0.9400 | 0.9889   |
| 0.0192        | 14.3135 | 1290 | 0.0491          | 0.9428    | 0.9494 | 0.9461 | 0.9899   |
| 0.0267        | 14.4799 | 1305 | 0.0490          | 0.9457    | 0.9545 | 0.9501 | 0.9901   |
| 0.0241        | 14.6463 | 1320 | 0.0506          | 0.9435    | 0.9540 | 0.9487 | 0.9899   |
| 0.0211        | 14.8128 | 1335 | 0.0510          | 0.9444    | 0.9540 | 0.9492 | 0.9903   |
| 0.0171        | 14.9792 | 1350 | 0.0499          | 0.9405    | 0.9545 | 0.9474 | 0.9898   |
| 0.0226        | 15.1456 | 1365 | 0.0511          | 0.9366    | 0.9540 | 0.9452 | 0.9894   |
| 0.024         | 15.3121 | 1380 | 0.0484          | 0.9445    | 0.9559 | 0.9501 | 0.9899   |
| 0.018         | 15.4785 | 1395 | 0.0482          | 0.9469    | 0.9517 | 0.9493 | 0.9903   |
| 0.0191        | 15.6449 | 1410 | 0.0491          | 0.9442    | 0.9512 | 0.9477 | 0.9899   |
| 0.0203        | 15.8114 | 1425 | 0.0451          | 0.9510    | 0.9554 | 0.9532 | 0.9912   |
| 0.0198        | 15.9778 | 1440 | 0.0447          | 0.9497    | 0.9549 | 0.9523 | 0.9911   |
| 0.0167        | 16.1442 | 1455 | 0.0444          | 0.9487    | 0.9540 | 0.9514 | 0.9909   |
| 0.0178        | 16.3107 | 1470 | 0.0513          | 0.9386    | 0.9512 | 0.9449 | 0.9892   |
| 0.024         | 16.4771 | 1485 | 0.0502          | 0.9430    | 0.9536 | 0.9483 | 0.9899   |
| 0.0206        | 16.6436 | 1500 | 0.0459          | 0.9483    | 0.9545 | 0.9514 | 0.9908   |
| 0.0188        | 16.8100 | 1515 | 0.0469          | 0.9474    | 0.9540 | 0.9507 | 0.9906   |
| 0.016         | 16.9764 | 1530 | 0.0463          | 0.9468    | 0.9582 | 0.9524 | 0.9906   |
| 0.0161        | 17.1429 | 1545 | 0.0455          | 0.9516    | 0.9596 | 0.9556 | 0.9911   |
| 0.0135        | 17.3093 | 1560 | 0.0475          | 0.9524    | 0.9573 | 0.9548 | 0.9909   |
| 0.0148        | 17.4757 | 1575 | 0.0479          | 0.9440    | 0.9545 | 0.9492 | 0.9905   |
| 0.0173        | 17.6422 | 1590 | 0.0455          | 0.9539    | 0.9605 | 0.9572 | 0.9915   |
| 0.0173        | 17.8086 | 1605 | 0.0456          | 0.9475    | 0.9554 | 0.9514 | 0.9913   |
| 0.0185        | 17.9750 | 1620 | 0.0461          | 0.9498    | 0.9577 | 0.9537 | 0.9908   |
| 0.0153        | 18.1415 | 1635 | 0.0472          | 0.9491    | 0.9605 | 0.9548 | 0.9911   |
| 0.0148        | 18.3079 | 1650 | 0.0446          | 0.9507    | 0.9587 | 0.9547 | 0.9913   |
| 0.0136        | 18.4743 | 1665 | 0.0441          | 0.9486    | 0.9601 | 0.9543 | 0.9914   |
| 0.0185        | 18.6408 | 1680 | 0.0478          | 0.9528    | 0.9573 | 0.9551 | 0.9915   |
| 0.0147        | 18.8072 | 1695 | 0.0493          | 0.9515    | 0.9652 | 0.9583 | 0.9912   |
| 0.0156        | 18.9736 | 1710 | 0.0509          | 0.9440    | 0.9545 | 0.9492 | 0.9903   |
| 0.0113        | 19.1401 | 1725 | 0.0460          | 0.9559    | 0.9573 | 0.9566 | 0.9911   |
| 0.014         | 19.3065 | 1740 | 0.0493          | 0.9439    | 0.9526 | 0.9482 | 0.9905   |
| 0.0147        | 19.4730 | 1755 | 0.0498          | 0.9476    | 0.9568 | 0.9522 | 0.9906   |
| 0.0126        | 19.6394 | 1770 | 0.0493          | 0.9474    | 0.9531 | 0.9502 | 0.9906   |
| 0.0167        | 19.8058 | 1785 | 0.0491          | 0.9463    | 0.9577 | 0.9520 | 0.9904   |
| 0.0126        | 19.9723 | 1800 | 0.0474          | 0.9492    | 0.9540 | 0.9516 | 0.9908   |
| 0.0107        | 20.1387 | 1815 | 0.0462          | 0.9524    | 0.9577 | 0.9551 | 0.9914   |
| 0.0115        | 20.3051 | 1830 | 0.0481          | 0.9504    | 0.9614 | 0.9559 | 0.9911   |
| 0.0128        | 20.4716 | 1845 | 0.0486          | 0.9475    | 0.9563 | 0.9519 | 0.9907   |
| 0.0113        | 20.6380 | 1860 | 0.0491          | 0.9477    | 0.9591 | 0.9534 | 0.9910   |
| 0.0119        | 20.8044 | 1875 | 0.0514          | 0.9494    | 0.9503 | 0.9499 | 0.9901   |
| 0.0122        | 20.9709 | 1890 | 0.0480          | 0.9481    | 0.9591 | 0.9536 | 0.9911   |
| 0.0123        | 21.1373 | 1905 | 0.0477          | 0.9467    | 0.9577 | 0.9522 | 0.9909   |
| 0.0116        | 21.3037 | 1920 | 0.0486          | 0.9485    | 0.9582 | 0.9533 | 0.9910   |
| 0.0108        | 21.4702 | 1935 | 0.0488          | 0.9442    | 0.9582 | 0.9511 | 0.9905   |
| 0.0115        | 21.6366 | 1950 | 0.0472          | 0.9498    | 0.9587 | 0.9542 | 0.9913   |
| 0.0083        | 21.8031 | 1965 | 0.0476          | 0.9490    | 0.9596 | 0.9543 | 0.9911   |
| 0.0094        | 21.9695 | 1980 | 0.0475          | 0.9482    | 0.9605 | 0.9543 | 0.9909   |
| 0.0118        | 22.1359 | 1995 | 0.0492          | 0.9449    | 0.9554 | 0.9501 | 0.9904   |
| 0.01          | 22.3024 | 2010 | 0.0486          | 0.9492    | 0.9554 | 0.9523 | 0.9909   |
| 0.0114        | 22.4688 | 2025 | 0.0497          | 0.9502    | 0.9577 | 0.9540 | 0.9910   |
| 0.0091        | 22.6352 | 2040 | 0.0499          | 0.9503    | 0.9582 | 0.9542 | 0.9910   |
| 0.0077        | 22.8017 | 2055 | 0.0502          | 0.9513    | 0.9614 | 0.9563 | 0.9911   |
| 0.01          | 22.9681 | 2070 | 0.0513          | 0.9544    | 0.9628 | 0.9586 | 0.9913   |
| 0.0087        | 23.1345 | 2085 | 0.0485          | 0.9500    | 0.9610 | 0.9554 | 0.9912   |
| 0.0073        | 23.3010 | 2100 | 0.0485          | 0.9557    | 0.9628 | 0.9593 | 0.9917   |
| 0.0083        | 23.4674 | 2115 | 0.0485          | 0.9535    | 0.9610 | 0.9572 | 0.9913   |
| 0.0117        | 23.6338 | 2130 | 0.0479          | 0.9557    | 0.9624 | 0.9590 | 0.9916   |
| 0.0095        | 23.8003 | 2145 | 0.0508          | 0.9498    | 0.9587 | 0.9542 | 0.9911   |
| 0.009         | 23.9667 | 2160 | 0.0513          | 0.9492    | 0.9628 | 0.9560 | 0.9910   |
| 0.0077        | 24.1331 | 2175 | 0.0504          | 0.9553    | 0.9628 | 0.9591 | 0.9915   |
| 0.0087        | 24.2996 | 2190 | 0.0500          | 0.9521    | 0.9610 | 0.9565 | 0.9913   |
| 0.0068        | 24.4660 | 2205 | 0.0506          | 0.9539    | 0.9610 | 0.9574 | 0.9913   |
| 0.0094        | 24.6325 | 2220 | 0.0500          | 0.9507    | 0.9591 | 0.9549 | 0.9913   |
| 0.0088        | 24.7989 | 2235 | 0.0486          | 0.9508    | 0.9596 | 0.9552 | 0.9914   |
| 0.0089        | 24.9653 | 2250 | 0.0507          | 0.9508    | 0.9610 | 0.9559 | 0.9911   |
| 0.0063        | 25.1318 | 2265 | 0.0479          | 0.9561    | 0.9610 | 0.9585 | 0.9917   |
| 0.0058        | 25.2982 | 2280 | 0.0506          | 0.9526    | 0.9619 | 0.9572 | 0.9911   |
| 0.0102        | 25.4646 | 2295 | 0.0499          | 0.9526    | 0.9624 | 0.9575 | 0.9912   |
| 0.0079        | 25.6311 | 2310 | 0.0543          | 0.9469    | 0.9614 | 0.9541 | 0.9905   |
| 0.009         | 25.7975 | 2325 | 0.0498          | 0.9526    | 0.9619 | 0.9572 | 0.9915   |
| 0.0068        | 25.9639 | 2340 | 0.0511          | 0.9509    | 0.9619 | 0.9564 | 0.9911   |
| 0.007         | 26.1304 | 2355 | 0.0492          | 0.9527    | 0.9633 | 0.9580 | 0.9914   |
| 0.0086        | 26.2968 | 2370 | 0.0516          | 0.9500    | 0.9610 | 0.9554 | 0.9913   |
| 0.0078        | 26.4632 | 2385 | 0.0503          | 0.9504    | 0.9610 | 0.9557 | 0.9914   |
| 0.0067        | 26.6297 | 2400 | 0.0514          | 0.9527    | 0.9628 | 0.9577 | 0.9915   |
| 0.0059        | 26.7961 | 2415 | 0.0504          | 0.9549    | 0.9628 | 0.9588 | 0.9919   |
| 0.0089        | 26.9626 | 2430 | 0.0520          | 0.9517    | 0.9605 | 0.9561 | 0.9916   |
| 0.0059        | 27.1290 | 2445 | 0.0512          | 0.9522    | 0.9624 | 0.9573 | 0.9917   |
| 0.0073        | 27.2954 | 2460 | 0.0526          | 0.9530    | 0.9610 | 0.9570 | 0.9916   |
| 0.0065        | 27.4619 | 2475 | 0.0530          | 0.9527    | 0.9628 | 0.9577 | 0.9916   |
| 0.0064        | 27.6283 | 2490 | 0.0515          | 0.9535    | 0.9610 | 0.9572 | 0.9917   |
| 0.0072        | 27.7947 | 2505 | 0.0542          | 0.9482    | 0.9610 | 0.9546 | 0.9907   |
| 0.0066        | 27.9612 | 2520 | 0.0537          | 0.9491    | 0.9610 | 0.9550 | 0.9909   |
| 0.006         | 28.1276 | 2535 | 0.0518          | 0.9531    | 0.9628 | 0.9579 | 0.9915   |
| 0.0074        | 28.2940 | 2550 | 0.0523          | 0.9521    | 0.9610 | 0.9565 | 0.9914   |
| 0.0068        | 28.4605 | 2565 | 0.0534          | 0.9495    | 0.9614 | 0.9555 | 0.9913   |
| 0.0055        | 28.6269 | 2580 | 0.0521          | 0.9548    | 0.9619 | 0.9584 | 0.9917   |
| 0.0056        | 28.7933 | 2595 | 0.0526          | 0.9522    | 0.9614 | 0.9568 | 0.9913   |
| 0.0066        | 28.9598 | 2610 | 0.0527          | 0.9522    | 0.9619 | 0.9570 | 0.9913   |
| 0.0053        | 29.1262 | 2625 | 0.0533          | 0.9531    | 0.9628 | 0.9579 | 0.9913   |
| 0.0063        | 29.2926 | 2640 | 0.0520          | 0.9530    | 0.9610 | 0.9570 | 0.9913   |
| 0.0059        | 29.4591 | 2655 | 0.0533          | 0.9504    | 0.9605 | 0.9554 | 0.9910   |
| 0.0059        | 29.6255 | 2670 | 0.0532          | 0.9526    | 0.9619 | 0.9572 | 0.9912   |
| 0.0062        | 29.7920 | 2685 | 0.0516          | 0.9535    | 0.9624 | 0.9579 | 0.9917   |
| 0.0064        | 29.9584 | 2700 | 0.0515          | 0.9522    | 0.9624 | 0.9573 | 0.9915   |
| 0.0055        | 30.1248 | 2715 | 0.0513          | 0.9549    | 0.9633 | 0.9591 | 0.9917   |
| 0.0064        | 30.2913 | 2730 | 0.0524          | 0.9540    | 0.9628 | 0.9584 | 0.9916   |
| 0.0055        | 30.4577 | 2745 | 0.0530          | 0.9531    | 0.9633 | 0.9582 | 0.9915   |
| 0.0065        | 30.6241 | 2760 | 0.0528          | 0.9536    | 0.9642 | 0.9589 | 0.9917   |
| 0.0068        | 30.7906 | 2775 | 0.0530          | 0.9518    | 0.9633 | 0.9575 | 0.9916   |
| 0.0047        | 30.9570 | 2790 | 0.0545          | 0.9532    | 0.9647 | 0.9589 | 0.9916   |
| 0.0051        | 31.1234 | 2805 | 0.0534          | 0.9545    | 0.9647 | 0.9596 | 0.9917   |
| 0.0044        | 31.2899 | 2820 | 0.0532          | 0.9531    | 0.9633 | 0.9582 | 0.9914   |
| 0.0068        | 31.4563 | 2835 | 0.0532          | 0.9527    | 0.9633 | 0.9580 | 0.9913   |
| 0.0045        | 31.6227 | 2850 | 0.0531          | 0.9545    | 0.9638 | 0.9591 | 0.9915   |
| 0.0047        | 31.7892 | 2865 | 0.0530          | 0.9540    | 0.9633 | 0.9586 | 0.9916   |
| 0.0075        | 31.9556 | 2880 | 0.0533          | 0.9549    | 0.9638 | 0.9593 | 0.9916   |
| 0.0055        | 32.1221 | 2895 | 0.0525          | 0.9553    | 0.9638 | 0.9595 | 0.9917   |
| 0.006         | 32.2885 | 2910 | 0.0523          | 0.9553    | 0.9638 | 0.9595 | 0.9917   |
| 0.0062        | 32.4549 | 2925 | 0.0525          | 0.9544    | 0.9633 | 0.9589 | 0.9917   |
| 0.0059        | 32.6214 | 2940 | 0.0525          | 0.9549    | 0.9638 | 0.9593 | 0.9917   |
| 0.0058        | 32.7878 | 2955 | 0.0531          | 0.9549    | 0.9642 | 0.9596 | 0.9917   |
| 0.005         | 32.9542 | 2970 | 0.0533          | 0.9536    | 0.9633 | 0.9584 | 0.9916   |
| 0.007         | 33.1207 | 2985 | 0.0533          | 0.9536    | 0.9633 | 0.9584 | 0.9916   |
| 0.0047        | 33.2871 | 3000 | 0.0532          | 0.9536    | 0.9633 | 0.9584 | 0.9916   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.5.1
- Datasets 2.19.0
- Tokenizers 0.19.1