File size: 1,469 Bytes
1719fa1
 
 
 
0d28726
5ddd82a
8101c09
 
 
 
 
 
1719fa1
 
5ddd82a
1719fa1
5ddd82a
 
 
 
 
 
 
 
 
 
 
 
 
3298cc6
 
 
 
0196ff9
5ddd82a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: creativeml-openrail-m
tags:
- text-to-image
- open-diffusion
- od-v1
- openskyml
language:
- en
- fr
- ru
pipeline_tag: text-to-image
---

# Open Diffusion V1

Generate cool images with OpenDiffusion V1 (OD-v1)

## Model Details

### Model Description

- **Developed by:** [OpenSkyML](https://huggingface.co/openskyml)
- **Model type:** [Multimodal (Text-to-Image)](https://huggingface.co/models?pipeline_tag=text-to-image)
- **License:** [CreativeML-Openrail-m](https://huggingface.co/models?license=license%3Acreativeml-openrail-m)

### Model Sources

- **Repository:** [click](https://huggingface.co/openskyml/open-diffusion-v1/tree/main)
- **Demo:**
   - [demo with Gradio](https://huggingface.co/spaces/openskyml/open-diffusion)
   - [demo with Docker](https://huggingface.co/spaces/openskyml/open-diffusion-docker)
 
  
## Uses

### In Free Inference API:
```py
import requests
HF_READ_TOKEN = "..."
API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1"
headers = {"Authorization": f"Bearer {HF_READ_TOKEN}"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
image_bytes = query({
	"inputs": "Astronaut riding a horse",
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))
```
### In Spaces:
```py
import gradio as gr

gr.load("models/openskyml/open-diffusion-v1").launch()
```