skaramcheti commited on
Commit
742ce85
1 Parent(s): d6e88ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -172
README.md CHANGED
@@ -1,199 +1,97 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
 
 
 
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - robotics
5
+ - multimodal
6
+ license: mit
7
+ language:
8
+ - en
9
+ pipeline_tag: image-text-to-text
10
  ---
11
 
12
+ # OpenVLA 7B
13
 
14
+ OpenVLA 7B (`openvla-7b`) is an open vision-language-action model trained on 970K robot manipulation episodes from the [Open X-Embodiment](https://robotics-transformer-x.github.io/) dataset.
15
+ The model takes language instructions and camera images as input and generates robot actions. It supports controlling multiple robots out-of-the-box, and can be quickly adapted for new robot domains via (parameter-efficient) fine-tuning.
16
 
17
+ All OpenVLA checkpoints are released under an MIT License. We additionally release our [pretraining and fine-tuning codebase](https://github.com/openvla/openvla) under
18
+ the same license.
19
 
20
+ For full details of our model and pretraining procedure please read [our paper](https://openvla.github.io/) and see [our project page](https://openvla.github.io/).
21
 
22
+ ## Model Summary
23
 
24
+ - **Developed by:** The OpenVLA team consisting of researchers from Stanford, UC Berkeley, Google Deepmind, and the Toyota Research Institute.
25
+ - **Model type:** Vision-language-action (language, image --> robot actions)
26
+ - **Language(s) (NLP):** en
27
+ - **License:** MIT
28
+ - **Finetuned from:** [`prism-dinosiglip-224px`](https://github.com/TRI-ML/prismatic-vlms), a VLM trained from:
29
+ + **Vision Backbone**: DINOv2 ViT-L/14 and SigLIP ViT-So400M/14
30
+ + **Language Model**: Llama-2
31
+ - **Pretraining Dataset:** [Open X-Embodiment](https://robotics-transformer-x.github.io/) -- specific component datasets can be found [here](https://github.com/openvla/openvla).
32
+ - **Repository:** [https://github.com/openvla/openvla](https://github.com/openvla/openvla)
33
+ - **Paper:** [OpenVLA: An Open-Source Vision-Language-Action Model](https://openvla.github.io/)
34
+ - **Project Page & Videos:** [https://openvla.github.io/](https://openvla.github.io/)
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Uses
37
 
38
+ OpenVLA models take a language instruction and a camera image of a robot workspace as input, and predict (normalized) robot actions consisting of 7-DoF end-effector deltas
39
+ of the form (x, y, z, roll, pitch, yaw, gripper). To execute on an actual robot platform, actions need to be *un-normalized* subject to statistics computed on a per-robot,
40
+ per-dataset basis. See [our repository](https://github.com/openvla/openvla) for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ OpenVLA models can be used zero-shot to control robots for specific combinations of embodiments and domains seen in the Open-X pretraining mixture (e.g., for
43
+ [BridgeV2 environments with a Widow-X robot](https://rail-berkeley.github.io/bridgedata/)). They can also be efficiently *fine-tuned* for new tasks and robot setups
44
+ given minimal demonstration data; [we provide example scripts for full and parameter-efficient finetuning](https://github.com/openvla/openvla/blob/main/scripts/finetune.py).
45
 
46
+ **Out-of-Scope:** OpenVLA models do not zero-shot generalize to new (unseen) robot embodiments, or setups that are not represented in the pretraining mix; in these cases,
47
+ we suggest collecting a dataset of demonstrations on the desired setup, and fine-tuning OpenVLA models instead.
48
 
49
+ ## Getting Started
50
 
51
+ OpenVLA 7B can be used to control multiple robots for domains represented in the pretraining mixture out-of-the-box. For example,
52
+ here is an example for loading `openvla-7b` for zero-shot instruction following in the [BridgeV2 environments] with a Widow-X robot:
53
 
54
+ ```python
55
+ # Install minimal dependencies (`torch`, `transformers`, `timm`, `tokenizers`, ...)
56
+ # > pip install -r https://raw.githubusercontent.com/openvla/openvla/main/requirements-min.txt
57
+ from transformers import AutoModelForVision2Seq, AutoProcessor
58
+ from PIL import Image
59
 
60
+ import torch
61
 
62
+ # Load Processor & VLA
63
+ processor = AutoProcessor.from_pretrained("openvla/openvla-7b", trust_remote_code=True)
64
+ vla = AutoModelForVision2Seq.from_pretrained(
65
+ "openvla/openvla-7b",
66
+ attn_implementation="flash_attention_2", # [Optional] Requires `flash_attn`
67
+ torch_dtype=torch.bfloat16,
68
+ low_cpu_mem_usage=True,
69
+ trust_remote_code=True
70
+ ).to("cuda:0")
71
 
72
+ # Grab image input & format prompt
73
+ image: Image.Image = get_from_camera(...)
74
+ prompt = "In: What action should the robot take to {<INSTRUCTION>}?\nOut:"
75
 
76
+ # Predict Action (7-DoF; un-normalize for BridgeV2)
77
+ inputs = processor(prompt, image).to("cuda:0", dtype=torch.bfloat16)
78
+ action = vla.predict_action(**inputs, unnorm_key="bridge_orig", do_sample=False)
79
 
80
+ # Execute...
81
+ robot.act(action, ...)
82
+ ```
83
 
84
+ For more examples, including scripts for fine-tuning OpenVLA models on your own robot demonstration datasets, see [our training repository](https://github.com/openvla/openvla).
85
 
86
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  **BibTeX:**
89
 
90
+ ```bibtex
91
+ @article{kim24openvla,
92
+ title={OpenVLA: An Open-Source Vision-Language-Action Model},
93
+ author={{Moo Jin} Kim and Karl Pertsch and Siddharth Karamcheti and Ted Xiao and Ashwin Balakrishna and Suraj Nair and Rafael Rafailov and Ethan Foster and Grace Lam and Pannag Sanketi and Quan Vuong and Thomas Kollar and Benjamin Burchfiel and Russ Tedrake and Dorsa Sadigh and Sergey Levine and Percy Liang and Chelsea Finn},
94
+ journal = {arXiv preprint},
95
+ year={2024}
96
+ }
97
+ ```