Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- af
|
5 |
+
- am
|
6 |
+
- ar
|
7 |
+
- as
|
8 |
+
- az
|
9 |
+
- be
|
10 |
+
- bg
|
11 |
+
- bn
|
12 |
+
- br
|
13 |
+
- bs
|
14 |
+
- ca
|
15 |
+
- cs
|
16 |
+
- cy
|
17 |
+
- da
|
18 |
+
- de
|
19 |
+
- el
|
20 |
+
- en
|
21 |
+
- eo
|
22 |
+
- es
|
23 |
+
- et
|
24 |
+
- eu
|
25 |
+
- fa
|
26 |
+
- fi
|
27 |
+
- fr
|
28 |
+
- fy
|
29 |
+
- ga
|
30 |
+
- gd
|
31 |
+
- gl
|
32 |
+
- gu
|
33 |
+
- ha
|
34 |
+
- he
|
35 |
+
- hi
|
36 |
+
- hr
|
37 |
+
- hu
|
38 |
+
- hy
|
39 |
+
- id
|
40 |
+
- is
|
41 |
+
- it
|
42 |
+
- ja
|
43 |
+
- jv
|
44 |
+
- ka
|
45 |
+
- kk
|
46 |
+
- km
|
47 |
+
- kn
|
48 |
+
- ko
|
49 |
+
- ku
|
50 |
+
- ky
|
51 |
+
- la
|
52 |
+
- lo
|
53 |
+
- lt
|
54 |
+
- lv
|
55 |
+
- mg
|
56 |
+
- mk
|
57 |
+
- ml
|
58 |
+
- mn
|
59 |
+
- mr
|
60 |
+
- ms
|
61 |
+
- my
|
62 |
+
- ne
|
63 |
+
- nl
|
64 |
+
- no
|
65 |
+
- om
|
66 |
+
- or
|
67 |
+
- pa
|
68 |
+
- pl
|
69 |
+
- ps
|
70 |
+
- pt
|
71 |
+
- ro
|
72 |
+
- ru
|
73 |
+
- sa
|
74 |
+
- sd
|
75 |
+
- si
|
76 |
+
- sk
|
77 |
+
- sl
|
78 |
+
- so
|
79 |
+
- sq
|
80 |
+
- sr
|
81 |
+
- su
|
82 |
+
- sv
|
83 |
+
- sw
|
84 |
+
- ta
|
85 |
+
- te
|
86 |
+
- th
|
87 |
+
- tl
|
88 |
+
- tr
|
89 |
+
- ug
|
90 |
+
- uk
|
91 |
+
- ur
|
92 |
+
- uz
|
93 |
+
- vi
|
94 |
+
- xh
|
95 |
+
- yi
|
96 |
+
- zh
|
97 |
+
license: mit
|
98 |
+
---
|
99 |
+
|
100 |
+
# XLM-V (Base-sized model)
|
101 |
+
|
102 |
+
XLM-V is multilingual language model with a one million token vocabulary trained on 2.5TB of data from Common Crawl (same as XLM-R).
|
103 |
+
It was introduced in the [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
|
104 |
+
paper by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer and Madian Khabsa.
|
105 |
+
|
106 |
+
**Disclaimer**: The team releasing XLM-V did not write a model card for this model so this model card has been written by the Hugging Face team. [This repository](https://github.com/stefan-it/xlm-v-experiments) documents all necessary integeration steps.
|
107 |
+
|
108 |
+
## Model description
|
109 |
+
|
110 |
+
From the abstract of the XLM-V paper:
|
111 |
+
|
112 |
+
> Large multilingual language models typically rely on a single vocabulary shared across 100+ languages.
|
113 |
+
> As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged.
|
114 |
+
> This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R.
|
115 |
+
> In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by
|
116 |
+
> de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity
|
117 |
+
> to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically
|
118 |
+
> more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V,
|
119 |
+
> a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we
|
120 |
+
> tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), and
|
121 |
+
> named entity recognition (WikiAnn) to low-resource tasks (Americas NLI, MasakhaNER).
|
122 |
+
|
123 |
+
## Usage
|
124 |
+
|
125 |
+
You can use this model directly with a pipeline for masked language modeling:
|
126 |
+
|
127 |
+
```python
|
128 |
+
>>> from transformers import pipeline
|
129 |
+
>>> unmasker = pipeline('fill-mask', model='facebook/xlm-v-base')
|
130 |
+
>>> unmasker("Paris is the <mask> of France.")
|
131 |
+
|
132 |
+
[{'score': 0.9286897778511047,
|
133 |
+
'token': 133852,
|
134 |
+
'token_str': 'capital',
|
135 |
+
'sequence': 'Paris is the capital of France.'},
|
136 |
+
{'score': 0.018073994666337967,
|
137 |
+
'token': 46562,
|
138 |
+
'token_str': 'Capital',
|
139 |
+
'sequence': 'Paris is the Capital of France.'},
|
140 |
+
{'score': 0.013238662853837013,
|
141 |
+
'token': 8696,
|
142 |
+
'token_str': 'centre',
|
143 |
+
'sequence': 'Paris is the centre of France.'},
|
144 |
+
{'score': 0.010450296103954315,
|
145 |
+
'token': 550136,
|
146 |
+
'token_str': 'heart',
|
147 |
+
'sequence': 'Paris is the heart of France.'},
|
148 |
+
{'score': 0.005028395913541317,
|
149 |
+
'token': 60041,
|
150 |
+
'token_str': 'center',
|
151 |
+
'sequence': 'Paris is the center of France.'}]
|
152 |
+
```
|
153 |
+
|
154 |
+
## Bias, Risks, and Limitations
|
155 |
+
|
156 |
+
Please refer to the model card of [XLM-R](https://huggingface.co/xlm-roberta-base), because XLM-V has a similar architecture
|
157 |
+
and has been trained on similar training data.
|
158 |
+
|
159 |
+
### BibTeX entry and citation info
|
160 |
+
|
161 |
+
```bibtex
|
162 |
+
@ARTICLE{2023arXiv230110472L,
|
163 |
+
author = {{Liang}, Davis and {Gonen}, Hila and {Mao}, Yuning and {Hou}, Rui and {Goyal}, Naman and {Ghazvininejad}, Marjan and {Zettlemoyer}, Luke and {Khabsa}, Madian},
|
164 |
+
title = "{XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models}",
|
165 |
+
journal = {arXiv e-prints},
|
166 |
+
keywords = {Computer Science - Computation and Language, Computer Science - Machine Learning},
|
167 |
+
year = 2023,
|
168 |
+
month = jan,
|
169 |
+
eid = {arXiv:2301.10472},
|
170 |
+
pages = {arXiv:2301.10472},
|
171 |
+
doi = {10.48550/arXiv.2301.10472},
|
172 |
+
archivePrefix = {arXiv},
|
173 |
+
eprint = {2301.10472},
|
174 |
+
primaryClass = {cs.CL},
|
175 |
+
adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv230110472L},
|
176 |
+
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
177 |
+
}
|
178 |
+
```
|