File size: 81,880 Bytes
204da06 c116d9c 204da06 0953ea5 e44547d 204da06 0953ea5 204da06 0953ea5 204da06 0953ea5 204da06 0953ea5 204da06 64c9f71 4753b37 64c9f71 204da06 e0229bb 204da06 0b86b9b 204da06 e9e8f85 204da06 e0229bb 1866ba4 204da06 0b86b9b 204da06 e9e8f85 204da06 47fa45e 204da06 4b203f9 204da06 e1a243a 204da06 8686e3f 204da06 e1a243a a00859f a9730e6 a00859f 204da06 e1a243a 204da06 e0229bb 204da06 e0229bb 204da06 e0229bb e1a243a 204da06 e0229bb e1a243a 204da06 e1a243a 204da06 e1a243a 204da06 1f61dbc f66abc1 1f61dbc f66abc1 0b90701 1400590 f66abc1 204da06 4b203f9 204da06 e1a243a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 |
# Copyright 2024 **AUTHORS_TODO**
# License: Apache-2.0
# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT
# Copyright 2022 Jonas Geiping
# License: MIT
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
# Copyright 2023 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2023, Tri Dao.
"""Implements Mosaic BERT, with an eye towards the Hugging Face API.
Mosaic BERT improves performance over Hugging Face BERT through the following:
1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
information through attention biases based on query-key position distance. It improves the effectiveness
of training with shorter sequence lengths by enabling extrapolation to longer sequences.
2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
to improve overall expressiveness, providing better convergence properties.
3. Flash Attention. The MosaicBERT's self-attention layer makes use of Flash Attention, which dramatically
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
supports attention biases, which allows us to use Flash Attention with ALiBi.
4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
implementations waste computation on padded tokens. MosaicBERT internally unpads to reduce unnecessary computation
and improve speed. It does this without changing how the user interfaces with the model, thereby
preserving the simple API of standard implementations.
Currently, MosaicBERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
See :file:`./mosaic_bert.py` for utilities to simplify working with MosaicBERT in Composer, and for example usage
of the core Mosaic BERT classes.
"""
import logging
import os
import sys
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from transformers.modeling_outputs import (
MaskedLMOutput,
ModelOutput,
CausalLMOutput,
MultipleChoiceModelOutput,
SequenceClassifierOutput,
)
from transformers.models.bert.modeling_bert import BertPreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
from .bert_padding import index_put_first_axis
from .activation import get_act_fn
from .attention import (
FlexBertPaddedAttention,
FlexBertPaddedParallelAttention,
FlexBertPaddedRopeAttention,
FlexBertPaddedRopeParallelAttention,
FlexBertUnpadAttention,
FlexBertUnpadParallelAttention,
FlexBertUnpadRopeAttention,
FlexBertUnpadRopeParallelAttention,
)
from .configuration_bert import FlexBertConfig
from .embeddings import (
BertAlibiEmbeddings,
FlexBertAbsoluteEmbeddings,
FlexBertCompiledSansPositionEmbeddings,
FlexBertSansPositionEmbeddings,
get_embedding_layer,
)
from .initialization import (
ModuleType,
TileLinear,
TileMode,
init_weights,
tile_embedding,
tile_linear,
tile_norm,
)
from .layers import (
BertAlibiEncoder,
BertPooler,
BertPredictionHeadTransform,
FlexBertCompileUnpadPreNormLayer,
FlexBertPaddedEncoder,
FlexBertPaddedParallelPreNormLayer,
FlexBertPaddedPostNormLayer,
FlexBertPaddedPreNormLayer,
FlexBertUnpadEncoder,
FlexBertUnpadParallelPreNormLayer,
FlexBertUnpadPostNormLayer,
FlexBertUnpadPreNormLayer,
get_encoder_layer,
)
from .mlp import FlexBertGLU, FlexBertMLP, FlexBertParallelGLU
from .normalization import get_norm_layer
from .padding import pad_input, unpad_input
from .loss import get_loss_fn
# TODO: This is not used here, but this is so these files are copied when saving the model in ST/PyLate
from .utils import StrEnum
from .rotary import UnpaddedRotaryEmbedding
logger = logging.getLogger(__name__)
def _count_parameters(model: nn.Module, trainable: bool = True) -> int:
if trainable:
return sum(p.numel() for p in model.parameters() if p.requires_grad)
else:
return sum(p.numel() for p in model.parameters())
class BertModel(BertPreTrainedModel):
"""Overall BERT model.
Args:
config: a BertConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(
self,
config,
add_pooling_layer: bool = True,
):
super(BertModel, self).__init__(config)
self.embeddings = BertAlibiEmbeddings(config)
self.encoder = BertAlibiEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_all_encoded_layers: Optional[bool] = False,
masked_tokens_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)
subset_mask = []
first_col_mask = []
if masked_tokens_mask is None:
subset_mask = None
else:
first_col_mask = torch.zeros_like(masked_tokens_mask)
first_col_mask[:, 0] = True
subset_mask = masked_tokens_mask | first_col_mask
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
subset_mask=subset_mask,
)
if masked_tokens_mask is None:
sequence_output = encoder_outputs[-1]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
else:
# TD [2022-03-01]: the indexing here is very tricky.
attention_mask_bool = attention_mask.bool()
subset_idx = subset_mask[attention_mask_bool] # type: ignore
sequence_output = encoder_outputs[-1][masked_tokens_mask[attention_mask_bool][subset_idx]]
if self.pooler is not None:
pool_input = encoder_outputs[-1][first_col_mask[attention_mask_bool][subset_idx]]
pooled_output = self.pooler(pool_input, pool=False)
else:
pooled_output = None
if not output_all_encoded_layers:
encoder_outputs = sequence_output
if self.pooler is not None:
return encoder_outputs, pooled_output
return encoder_outputs, None
###################
# Bert Heads
###################
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0))
self.decoder.weight = bert_model_embedding_weights
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super().__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
#####################
# Various Bert models
#####################
class BertForPreTraining(BertPreTrainedModel):
# TBD: Coming in Future Commit
pass
class BertLMHeadModel(BertPreTrainedModel):
# TBD: Coming in Future Commit
pass
class BertForMaskedLM(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
warnings.warn(
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
# labels should be a `torch.LongTensor` of shape
# `(batch_size, sequence_length)`. These are used for computing the
# masked language modeling loss.
#
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
# (masked), the loss is only computed for the tokens with labels in `[0,
# ..., config.vocab_size]`
#
# Prediction scores are only computed for masked tokens and the (bs,
# seqlen) dimensions are flattened
if (input_ids is not None) == (inputs_embeds is not None):
raise ValueError("Must specify either input_ids or input_embeds!")
if labels is None:
masked_tokens_mask = None
else:
masked_tokens_mask = labels > 0
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
masked_tokens_mask=masked_tokens_mask,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
loss = None
if labels is not None:
# Compute loss
loss_fct = nn.CrossEntropyLoss()
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx])
assert input_ids is not None, "Coding error; please open an issue"
batch, seqlen = input_ids.shape[:2]
prediction_scores = rearrange(
index_put_first_axis(prediction_scores, masked_token_idx, batch * seqlen),
"(b s) d -> b s d",
b=batch,
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=None,
attentions=None,
)
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat(
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
dim=-1,
)
dummy_token = torch.full(
(effective_batch_size, 1),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device,
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
class BertForNextSentencePrediction(BertPreTrainedModel):
# TBD: Push in future commit
pass
class BertForSequenceClassification(BertPreTrainedModel):
"""Bert Model transformer with a sequence classification/regression head.
This head is just a linear layer on top of the pooled output. Used for,
e.g., GLUE tasks.
"""
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
# Labels for computing the sequence classification/regression loss.
# Indices should be in `[0, ..., config.num_labels - 1]`.
# If `config.num_labels == 1` a regression loss is computed
# (mean-square loss). If `config.num_labels > 1` a classification loss
# is computed (cross-entropy).
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# Compute loss
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
)
class BertForMultipleChoice(BertPreTrainedModel):
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
"""
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
# In multiple choice tasks, all choices are submitted in a batch, and
# we compute a logit for each option independently. The logits are then
# normalized in the forward pass to get a probability distribution over
# the choices.
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=None,
attentions=None,
)
class BertForTokenClassification(BertPreTrainedModel):
# TBD: Push in future commit
pass
class BertForQuestionAnswering(BertPreTrainedModel):
"""Bert Model with a span classification head.
This is used for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden states' output to compute `span start logits`
and `span end logits`).
"""
# TBD: Push in future commit
###################
# FlexBert Heads
###################
class FlexBertPredictionHead(nn.Module):
def __init__(self, config: FlexBertConfig):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_pred_bias)
self.act = get_act_fn(config.head_pred_act) if config.head_pred_act else nn.Identity()
self.norm = (
get_norm_layer(config, compiled_norm=config.compile_model) if config.head_pred_norm else nn.Identity()
)
def _init_weights(self, reset_params: bool = False):
if reset_params:
self.norm.reset_parameters()
init_weights(self.config, self.dense, layer_dim=self.config.hidden_size, type_of_module=ModuleType.in_module)
def reset_parameters(self):
self._init_weights(reset_params=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(self.act(self.dense(hidden_states)))
class FlexBertPoolingHead(nn.Module):
def __init__(self, config: FlexBertConfig):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_class_bias)
self.act = get_act_fn(config.head_class_act) if config.head_class_act else nn.Identity()
self.norm = get_norm_layer(config) if config.head_class_norm else nn.Identity()
self.drop = torch.nn.Dropout(config.head_class_dropout) if config.head_class_dropout > 0 else nn.Identity()
self.pooling_type = config.pooling_type
def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
if pool:
if self.pooling_type == "cls":
output = hidden_states[:, 0]
elif self.pooling_type == "mean":
output = hidden_states.mean(dim=1)
elif self.pooling_type == "max":
output = hidden_states.max(dim=1)[0]
else:
output = hidden_states
return self.drop(self.norm(self.act(self.dense(output))))
def _init_weights(self, reset_params: bool = False):
init_weights(self.config, self.dense, self.config.hidden_size, type_of_module=ModuleType.out_module)
if reset_params and hasattr(self.norm, "reset_parameters"):
self.norm.reset_parameters()
def reset_parameters(self):
self._init_weights(reset_params=True)
###################
# FlexBert Models
###################
@dataclass
class MaskedLMOutput(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
indices: Optional[torch.LongTensor] = None
cu_seqlens: Optional[torch.LongTensor] = None
max_seqlen: Optional[int] = None
batch_size: Optional[int] = None
seq_len: Optional[int] = None
labels: Optional[torch.LongTensor] = None
@dataclass
class MaskedLMOutputZLoss(ModelOutput):
"""
Base class for masked language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
ce_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Cross entropy loss.
z_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Z loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
indices (`torch.LongTensor` of shape `(batch_size,)`):
Indices of the tokens to be masked.
"""
loss: Optional[torch.FloatTensor] = None
ce_loss: Optional[torch.FloatTensor] = None
z_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
indices: Optional[torch.LongTensor] = None
cu_seqlens: Optional[torch.LongTensor] = None
max_seqlen: Optional[int] = None
batch_size: Optional[int] = None
seq_len: Optional[int] = None
labels: Optional[torch.LongTensor] = None
class FlexBertPreTrainedModel(BertPreTrainedModel):
"""
An abstract class to handle custom weights initialization of modules
"""
def _init_module_weights(self, module: nn.Module):
"""
Custom weight init of modules using src.bert_layers.initialization.init_weights
Currently only supports init of embedding modules
"""
assert isinstance(module, nn.Module)
if isinstance(module, nn.Embedding):
init_weights(self.config, module, type_of_module=ModuleType.emb)
else:
raise NotImplementedError("Custom weight init for the given module is not supported")
class FlexBertModel(FlexBertPreTrainedModel):
"""Overall BERT model.
Args:
config: a BertConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config: FlexBertConfig):
super().__init__(config)
self.embeddings = get_embedding_layer(config)
self.encoder = get_encoder_layer(config)
if config.final_norm:
# if we use prenorm attention we need to add a final norm
self.final_norm = get_norm_layer(config)
else:
self.final_norm = None
self.unpad_embeddings = config.unpad_embeddings
self.is_decoder = False
def post_init(self):
self._init_weights(reset_params=False)
self._backward_compatibility_gradient_checkpointing()
def get_input_embeddings(self):
return self.embeddings.tok_embeddings
def set_input_embeddings(self, value):
self.embeddings.tok_embeddings = value
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
**kwargs,
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
if attention_mask is None and not self.is_decoder:
attention_mask = torch.ones_like(input_ids)
embedding_output = self.embeddings(input_ids, position_ids)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=attention_mask,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if self.final_norm is not None:
encoder_outputs = self.final_norm(encoder_outputs)
return encoder_outputs
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
if module:
self._init_module_weights(module)
else:
assert isinstance(reset_params, bool)
self.embeddings._init_weights(reset_params=reset_params)
self.encoder._init_weights(reset_params=reset_params)
if reset_params and self.config.final_norm:
self.final_norm.reset_parameters()
def reset_parameters(self):
self._init_weights(reset_params=True)
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
"""Returns the number of parameters in the model.
Args:
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
trainable: only count trainable parameters.
"""
params = sum([_count_parameters(layer, trainable) for layer in self.encoder.layers])
if count_embeddings:
params += _count_parameters(self.embeddings, trainable)
if hasattr(self.embeddings, "position_embeddings"):
params -= _count_parameters(self.embeddings.position_embeddings, trainable)
return params
class FlexBertForMaskedLM(FlexBertPreTrainedModel):
def __init__(self, config: FlexBertConfig):
super().__init__(config)
self.bert = FlexBertModel(config)
self.head = FlexBertPredictionHead(config)
if config.tie_word_embeddings:
decoder_weights = self.bert.embeddings.tok_embeddings.weight
else:
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
self.decoder.weight = decoder_weights
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
self.unpad_embeddings = config.unpad_embeddings
self.pad_logits = config.pad_logits
self.compile_model = config.compile_model
self.masked_prediction = config.masked_prediction
# Initialize weights and apply final processing
self._init_weights(reset_params=False)
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
if module:
self._init_module_weights(module)
else:
assert isinstance(reset_params, bool)
self.bert._init_weights(reset_params=reset_params)
self.head._init_weights(reset_params=reset_params)
# Output weights.
if not self.config.tie_word_embeddings:
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("FlexBERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, new_embeddings):
self.decoder = new_embeddings
@torch.no_grad()
def unpad_inputs(
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
):
return unpad_input(input_ids, attention_mask, position_ids, labels)
@torch.no_grad()
def pad_inputs(
self,
inputs: torch.Tensor,
indices: torch.Tensor,
batch_size: int,
seqlen: int,
labels: Optional[torch.Tensor] = None,
ignore_index: int = -100,
):
return pad_input(
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
)
@torch.compile(dynamic=True)
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
return self.decoder(self.head(output))
def forward(
self,
input_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
# labels should be a `torch.LongTensor` of shape
# `(batch_size, sequence_length)`. These are used for computing the
# masked language modeling loss.
#
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
# (masked), the loss is only computed for the tokens with labels in `[0,
# ..., config.vocab_size]`
#
# Prediction scores are only computed for masked tokens and the (bs,
# seqlen) dimensions are flattened
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
batch_size, seq_len = input_ids.shape[:2]
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
input_ids, attention_mask, position_ids, labels
)
output = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if self.masked_prediction and labels is not None:
# flatten labels and output first
labels = labels.view(-1)
output = output.view(labels.shape[0], -1)
# then filter out the non-masked tokens
mask_tokens = labels != self.loss_fn.ignore_index
output = output[mask_tokens]
labels = labels[mask_tokens]
if self.compile_model:
logits = self.compiled_head(output)
else:
logits = self.decoder(self.head(output))
loss = None
if labels is not None:
if not self.masked_prediction:
labels = labels.view(-1)
logits = logits.view(labels.shape[0], -1)
if self.return_z_loss:
loss, z_loss = self.loss_fn(logits, labels)
if self.pad_logits:
return MaskedLMOutputZLoss(
loss=loss,
ce_loss=loss.detach().clone() - z_loss,
z_loss=z_loss,
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
hidden_states=None,
attentions=None,
)
else:
return MaskedLMOutputZLoss(
loss=loss,
ce_loss=loss.detach().clone() - z_loss,
z_loss=z_loss,
logits=logits,
hidden_states=None,
attentions=None,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
labels=labels,
)
else:
loss = self.loss_fn(logits, labels)
if self.pad_logits:
return MaskedLMOutput(
loss=loss,
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
hidden_states=None,
attentions=None,
)
else:
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
labels=labels,
)
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat(
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
dim=-1,
)
dummy_token = torch.full(
(effective_batch_size, 1),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device,
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
def get_number_parameters(
self, count_embeddings: bool = True, count_decoder: bool = False, trainable: bool = True
) -> int:
"""Returns the number of parameters in the model.
Args:
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
count_decoder: count the parameters in the decoder layer if weights are not tied.
trainable: only count trainable parameters.
"""
params = self.bert.get_number_parameters(count_embeddings, trainable)
params += _count_parameters(self.head, trainable)
if count_decoder and not self.config.tie_word_embeddings:
params += _count_parameters(self.decoder, trainable)
return params
class FlexBertForSequenceClassification(FlexBertPreTrainedModel):
"""Bert Model transformer with a sequence classification/regression head.
This head is just a linear layer on top of the pooled output. Used for,
e.g., GLUE tasks.
"""
def __init__(self, config: FlexBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = FlexBertModel(config)
self.head = FlexBertPoolingHead(config)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self._init_weights(reset_params=False)
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
if module:
self._init_module_weights(module)
else:
assert isinstance(reset_params, bool)
self.bert._init_weights(reset_params=reset_params)
self.head._init_weights(reset_params=reset_params)
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
# Labels for computing the sequence classification/regression loss.
# Indices should be in `[0, ..., config.num_labels - 1]`.
# If `config.num_labels == 1` a regression loss is computed
# (mean-square loss). If `config.num_labels > 1` a classification loss
# is computed (cross-entropy).
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
)
pooled_output = self.head(output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# Compute loss
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + output
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
)
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
"""Returns the number of parameters in the model.
Args:
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
trainable: only count trainable parameters.
"""
params = self.bert.get_number_parameters(count_embeddings, trainable)
params += _count_parameters(self.head, trainable)
params += _count_parameters(self.classifier, trainable)
return params
class FlexBertForMultipleChoice(FlexBertPreTrainedModel):
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
"""
def __init__(self, config: FlexBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = FlexBertModel(config)
self.head = FlexBertPoolingHead(config)
# In multiple choice tasks, all choices are submitted in a batch, and
# we compute a logit for each option independently. The logits are then
# normalized in the forward pass to get a probability distribution over
# the choices.
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self._init_weights(reset_params=False)
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
if module:
self._init_module_weights(module)
else:
assert isinstance(reset_params, bool)
self.bert._init_weights(reset_params=reset_params)
self.head._init_weights(reset_params=reset_params)
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
# Labels for computing the sequence classification/regression loss.
# Indices should be in `[0, ..., config.num_labels - 1]`.
# If `config.num_labels == 1` a regression loss is computed
# (mean-square loss). If `config.num_labels > 1` a classification loss
# is computed (cross-entropy).
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
output = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
)
pooled_output = self.head(output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + output
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=None,
attentions=None,
)
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
"""Returns the number of parameters in the model.
Args:
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
trainable: only count trainable parameters.
"""
params = self.bert.get_number_parameters(count_embeddings, trainable)
params += _count_parameters(self.head, trainable)
params += _count_parameters(self.classifier, trainable)
return params
class FlexBertForCausalLM(FlexBertPreTrainedModel):
config_class = FlexBertConfig
"""Bert Model transformer with a LM head.
This head is just a standard LM head module. Used for causal language modeling tasks.
"""
def __init__(self, config: FlexBertConfig):
super().__init__(config)
self.bert = FlexBertModel(config)
self.bert.is_decoder = True
self.lm_head = FlexBertPredictionHead(config)
if config.tie_word_embeddings:
decoder_weights = self.bert.embeddings.tok_embeddings.weight
else:
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
self.decoder.weight = decoder_weights
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
self.unpad_embeddings = config.unpad_embeddings
self.pad_logits = config.pad_logits
self.compile_model = config.compile_model
self.masked_prediction = config.masked_prediction
# Initialize weights and apply final processing
self._init_weights(reset_params=False)
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
if module is not None:
# Add basic initialization for common module types
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
else:
assert isinstance(reset_params, bool)
self.bert._init_weights(reset_params=reset_params)
self.lm_head._init_weights(reset_params=reset_params)
if not self.config.tie_word_embeddings:
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
@classmethod
def from_composer(
cls,
pretrained_checkpoint,
state_dict=None,
cache_dir=None,
from_tf=False,
config=None,
*inputs,
**kwargs,
):
"""Load from pre-trained."""
model = cls(config, *inputs, **kwargs)
if from_tf:
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
state_dict = torch.load(pretrained_checkpoint)
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
if len(unexpected_keys) > 0:
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
return model
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, new_embeddings):
self.decoder = new_embeddings
@torch.no_grad()
def unpad_inputs(
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
):
return unpad_input(input_ids, attention_mask, position_ids, labels)
@torch.no_grad()
def pad_inputs(
self,
inputs: torch.Tensor,
indices: torch.Tensor,
batch_size: int,
seqlen: int,
labels: Optional[torch.Tensor] = None,
ignore_index: int = -100,
):
return pad_input(
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
)
@torch.compile(dynamic=True)
def compiled_lm_head(self, output: torch.Tensor) -> torch.Tensor:
return self.decoder(self.lm_head(output))
def forward(
self,
input_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
# labels should be a `torch.LongTensor` of shape
# `(batch_size, sequence_length)`. These are used for computing the
# masked language modeling loss.
#
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
# (masked), the loss is only computed for the tokens with labels in `[0,
# ..., config.vocab_size]`
#
# Prediction scores are only computed for masked tokens and the (bs,
# seqlen) dimensions are flattened
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
batch_size, seq_len = input_ids.shape[:2]
if attention_mask is None:
# create all ones, except for padding (TODO?)
attention_mask = torch.ones_like(input_ids)
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
input_ids, attention_mask, position_ids, labels
)
hidden_states = self.bert(
input_ids,
attention_mask=None, # let FA do this
position_ids=position_ids,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if self.compile_model:
logits = self.compiled_lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if cu_seqlens is not None:
shift_labels = torch.full_like(input_ids, -100)
shift_labels[:-1] = input_ids[1:]
# Mask boundaries, so eos doesn't predict bos
for i in range(len(cu_seqlens) - 1):
boundary_pos = cu_seqlens[i+1] - 1
shift_labels[boundary_pos] = -100
# NOTE: no padding or mask in there for now
assert 50283 not in shift_labels, f"PAD token found in shift_labels: {shift_labels}"
assert 50284 not in shift_labels, f"MASK token found in shift_labels: {shift_labels}"
assert shift_labels.shape == logits.shape[:-1] # Verify shapes align
else:
# Padded case: simple shift
shift_labels = input_ids[..., 1:].contiguous()
logits = logits[..., :-1, :].contiguous()
# mask out PAD tokens in the shift_labels
mask = (shift_labels == 50283)
shift_labels = torch.where(mask, torch.tensor(-100, device=shift_labels.device), shift_labels)
assert shift_labels.shape == logits.shape[:-1] # Verify shapes align
# For both cases, we'll use the shifted input_ids as our labels
labels = shift_labels
# Flatten the tokens
loss = self.loss_fn(
logits.view(-1, logits.size(-1)),
shift_labels.view(-1)
)
if self.pad_logits:
return CausalLMOutput(
loss=loss,
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
hidden_states=None,
attentions=None,
)
else:
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=hidden_states,
attentions=None,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
**kwargs
) -> dict:
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
# Calculate sequence-local positions
seqlens = attention_mask.sum(dim=-1) # Get length of each sequence
position_ids = torch.zeros_like(input_ids)
for i in range(len(seqlens)):
position_ids[i, :seqlens[i]] = torch.arange(seqlens[i], device=input_ids.device)
batch_size, seq_len = input_ids.shape[:2]
input_ids, indices, cu_seqlens, max_seqlen, position_ids, _ = self.unpad_inputs(
input_ids, attention_mask, position_ids, None
)
breakpoint()
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
"indices": indices,
"cu_seqlens": cu_seqlens,
"max_seqlen": max_seqlen,
"batch_size": batch_size,
"seq_len": seq_len
}
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
"""Returns the number of parameters in the model.
Args:
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
trainable: only count trainable parameters.
"""
params = self.bert.get_number_parameters(count_embeddings, trainable)
params += _count_parameters(self.lm_head, trainable)
return params
FlexBertForCausalLM.register_for_auto_class("AutoModelForCausalLM")
def init_model_from_pretrained(
pretrained_model: FlexBertModel,
new_model: FlexBertModel,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Initialize the new model from the pretrained model.
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
Args:
pretrained_model (FlexBertModel): The smaller, pre-trained model
new_model (FlexBertModel): The larger model to be initialized
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
This function assumes that the new_model has more layers and a larger hidden size
than the pretrained_model, but the same vocabulary size.
"""
# Tile embeddings
assert isinstance(
new_model.embeddings, type(pretrained_model.embeddings)
), f"Pretrained and new_model layers must be the same type, got {type(new_model.embeddings)} and {type(pretrained_model.embeddings)}"
assert isinstance(
new_model.embeddings,
(FlexBertAbsoluteEmbeddings, FlexBertSansPositionEmbeddings, FlexBertCompiledSansPositionEmbeddings),
), f"Unsupported embedding layer type: {type(new_model.embeddings)}"
tile_embedding(pretrained_model.embeddings.tok_embeddings, new_model.embeddings.tok_embeddings, mode=mode)
if isinstance(pretrained_model.embeddings, FlexBertAbsoluteEmbeddings):
tile_embedding(pretrained_model.embeddings.pos_embeddings, new_model.embeddings.pos_embeddings, mode=mode)
if hasattr(pretrained_model.embeddings, "norm"):
tile_norm(pretrained_model.embeddings.norm, new_model.embeddings.norm, mode=mode)
# Tile encoder layers
assert isinstance(
pretrained_model.encoder, (FlexBertUnpadEncoder, FlexBertPaddedEncoder)
), f"Unsupported encoder layer type: {type(pretrained_model.encoder)}"
assert isinstance(
new_model.encoder, type(pretrained_model.encoder)
), f"Pretrained and new_model encoder layers must be the same type, got {type(new_model.encoder)} and {type(pretrained_model.encoder)}"
# Calculate the layer mapping
pretrained_layers = len(pretrained_model.encoder.layers)
new_layers = len(new_model.encoder.layers)
layer_mapping = [round(i * pretrained_layers / new_layers) for i in range(new_layers)]
# Initialize layers
for new_model_idx, pretrained_idx in enumerate(layer_mapping):
new_model_layer = new_model.encoder.layers[new_model_idx]
pretrained_layer = pretrained_model.encoder.layers[pretrained_idx]
# first tile the PreNorm/PostNorm layers
assert isinstance(
new_model_layer, type(pretrained_layer)
), f"Pretrained and new_model prenorm/postnorm layers must be the same type, got {type(new_model_layer)} and {type(pretrained_layer)}"
assert isinstance(
new_model_layer,
(
FlexBertUnpadPreNormLayer,
FlexBertCompileUnpadPreNormLayer,
FlexBertUnpadParallelPreNormLayer,
FlexBertUnpadPostNormLayer,
FlexBertPaddedPreNormLayer,
FlexBertPaddedParallelPreNormLayer,
FlexBertPaddedPostNormLayer,
),
), f"Unsupported prenorm/postnorm layer type: {type(new_model_layer)}"
# First tile the normalization layers
if hasattr(pretrained_layer, "attn_norm"):
tile_norm(pretrained_layer.attn_norm, new_model_layer.attn_norm, mode=mode)
if hasattr(pretrained_layer, "norm"):
tile_norm(pretrained_layer.norm, new_model_layer.norm, mode=mode)
if hasattr(pretrained_layer, "mlp_norm"):
tile_norm(pretrained_layer.mlp_norm, new_model_layer.mlp_norm, mode=mode)
# Then tile the attention & mlp layers
assert isinstance(
new_model_layer.attn, type(pretrained_layer.attn)
), f"Pretrained and new_model attention layers must be the same type, got {type(new_model_layer.attn)} and {type(pretrained_layer.attn)}"
# first try the parallel attention layers
if isinstance(pretrained_layer, (FlexBertUnpadParallelPreNormLayer, FlexBertPaddedParallelPreNormLayer)):
assert isinstance(
pretrained_layer.attn,
(
FlexBertUnpadParallelAttention,
FlexBertPaddedParallelAttention,
FlexBertUnpadRopeParallelAttention,
FlexBertPaddedRopeParallelAttention,
),
), f"Parallel prenorm layer must have parallel attention layer: {type(pretrained_layer.attn)}"
if not isinstance(pretrained_layer.mlp, (FlexBertParallelGLU)):
raise ValueError(f"Parallel prenorm layer must have parallel MLP layer: {type(pretrained_layer.mlp)}")
tile_linear(
pretrained_layer.Wqkvff,
new_model_layer.Wqkvff,
linear_type=TileLinear.wqkvff,
mode=mode,
pretrained_attn_size=pretrained_layer.attn_size,
pretrained_mlp_size=pretrained_layer.mlp_size,
new_attn_size=new_model_layer.attn_size,
new_mlp_size=new_model_layer.mlp_size,
wqkvff_is_glu=True,
)
# then try the fused attention layers
elif isinstance(
pretrained_layer.attn,
(
FlexBertUnpadAttention,
FlexBertPaddedAttention,
FlexBertUnpadRopeAttention,
FlexBertPaddedRopeAttention,
),
):
tile_linear(pretrained_layer.attn.Wqkv, new_model_layer.attn.Wqkv, linear_type=TileLinear.wqkv, mode=mode)
else:
raise ValueError(f"Unsupported attention layer type: {type(pretrained_layer.attn)}")
# finally, tile the attention output layer
tile_linear(pretrained_layer.attn.Wo, new_model_layer.attn.Wo, linear_type=TileLinear.default, mode=mode)
# tile the mlp layer if the model is not using parallel attention layers
if not isinstance(pretrained_layer.mlp, (FlexBertMLP, FlexBertGLU, FlexBertParallelGLU)):
raise ValueError(f"Unsupported MLP layer type: {type(pretrained_layer.mlp)}")
assert isinstance(
new_model_layer.mlp, type(pretrained_layer.mlp)
), f"Pretrained and new_model mlp layers must be the same type, got {type(new_model_layer.mlp)} and {type(pretrained_layer.mlp)}"
# already tiled the parallel glu layer if it exists, so only need to handle mlp & glu Wi
if isinstance(pretrained_layer.mlp, FlexBertGLU):
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.glu, mode=mode)
elif isinstance(pretrained_layer.mlp, FlexBertMLP):
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.default, mode=mode)
# tile the output for both ParallelGLU and MLP/GLU
tile_linear(pretrained_layer.mlp.Wo, new_model_layer.mlp.Wo, linear_type=TileLinear.default, mode=mode)
def init_mlm_model_from_pretrained(
config: FlexBertConfig,
pretrained_model: FlexBertForMaskedLM,
new_model: FlexBertForMaskedLM,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Initialize the new model from the pretrained model.
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
Args:
config (FlexBertConfig): The configuration of the new_model
pretrained_model (FlexBertForMaskedLM): The smaller, pre-trained model
new_model (FlexBertForMaskedLM): The larger model to be initialized from the pretrained model
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
This function assumes that the new_model has more layers and a larger hidden size
than the pretrained_model, but the same vocabulary size.
"""
init_model_from_pretrained(pretrained_model.bert, new_model.bert, mode=mode)
# TODO: uncomment this when the repo is turned into a pip installable package
# if not isinstance(pretrained_model.head, FlexBertPredictionHead):
# raise ValueError(f"Pretrained model must have a prediction head: {type(pretrained_model.head)}")
# if not isinstance(new_model.head, FlexBertPredictionHead):
# raise ValueError(f"New model must have a prediction head: {type(new_model.head)}")
# tile the prediction head
tile_linear(pretrained_model.head.dense, new_model.head.dense, linear_type=TileLinear.default, mode=mode)
tile_norm(pretrained_model.head.norm, new_model.head.norm, mode=mode)
# setup weight tying
if config.tie_word_embeddings:
new_model.decoder.weight = new_model.bert.embeddings.tok_embeddings.weight
tile_linear(
pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode, bias_only=True
)
else:
tile_linear(pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode) |