File size: 82,110 Bytes
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c116d9c
204da06
 
 
 
0953ea5
e44547d
204da06
0953ea5
 
204da06
 
 
 
 
 
 
 
 
0953ea5
 
204da06
 
 
 
 
 
0953ea5
204da06
 
 
 
 
 
 
 
0953ea5
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
64c9f71
 
 
4753b37
64c9f71
 
 
 
 
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0229bb
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b86b9b
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e8f85
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0229bb
1866ba4
204da06
 
 
 
 
 
 
 
0b86b9b
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e8f85
204da06
 
 
 
47fa45e
204da06
4b203f9
 
 
 
 
 
 
 
 
204da06
 
 
 
e1a243a
204da06
 
8686e3f
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a243a
 
a00859f
a9730e6
a00859f
204da06
 
 
 
 
 
e1a243a
204da06
 
 
 
 
 
 
 
 
 
e0229bb
204da06
 
e0229bb
11a83af
 
e0229bb
e1a243a
204da06
e0229bb
11a83af
 
e0229bb
e1a243a
 
 
11a83af
204da06
 
 
11a83af
e1a243a
 
 
11a83af
204da06
 
 
 
 
11a83af
204da06
 
 
 
e1a243a
11a83af
204da06
 
 
 
 
 
 
 
 
 
1f61dbc
 
 
 
f66abc1
1f61dbc
 
f66abc1
 
0b90701
1400590
 
 
 
 
 
f66abc1
 
3cd88d6
 
 
 
 
 
 
 
f66abc1
 
 
 
 
 
 
 
 
204da06
 
 
 
 
 
 
 
 
 
 
 
4b203f9
204da06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a243a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
# Copyright 2024 **AUTHORS_TODO**
# License: Apache-2.0

# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT

# Copyright 2022 Jonas Geiping
# License: MIT

# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

# Copyright 2023 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018-2021, NVIDIA CORPORATION.  All rights reserved.
# Copyright (c) 2023, Tri Dao.

"""Implements Mosaic BERT, with an eye towards the Hugging Face API.

Mosaic BERT improves performance over Hugging Face BERT through the following:

1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
information through attention biases based on query-key position distance. It improves the effectiveness
of training with shorter sequence lengths by enabling extrapolation to longer sequences.

2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
to improve overall expressiveness, providing better convergence properties.

3. Flash Attention. The MosaicBERT's self-attention layer makes use of Flash Attention, which dramatically
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
supports attention biases, which allows us to use Flash Attention with ALiBi.

4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
implementations waste computation on padded tokens. MosaicBERT internally unpads to reduce unnecessary computation
and improve speed. It does this without changing how the user interfaces with the model, thereby
preserving the simple API of standard implementations.


Currently, MosaicBERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.

See :file:`./mosaic_bert.py` for utilities to simplify working with MosaicBERT in Composer, and for example usage
of the core Mosaic BERT classes.
"""

import logging
import os
import sys
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
sys.path.append(os.path.dirname(os.path.realpath(__file__)))

import torch
import torch.nn as nn
from einops import rearrange
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from transformers.modeling_outputs import (
    MaskedLMOutput,
    ModelOutput,
    CausalLMOutput,
    MultipleChoiceModelOutput,
    SequenceClassifierOutput,
)
from transformers.models.bert.modeling_bert import BertPreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
from .bert_padding import index_put_first_axis

from .activation import get_act_fn
from .attention import (
    FlexBertPaddedAttention,
    FlexBertPaddedParallelAttention,
    FlexBertPaddedRopeAttention,
    FlexBertPaddedRopeParallelAttention,
    FlexBertUnpadAttention,
    FlexBertUnpadParallelAttention,
    FlexBertUnpadRopeAttention,
    FlexBertUnpadRopeParallelAttention,
)
from .configuration_bert import FlexBertConfig
from .embeddings import (
    BertAlibiEmbeddings,
    FlexBertAbsoluteEmbeddings,
    FlexBertCompiledSansPositionEmbeddings,
    FlexBertSansPositionEmbeddings,
    get_embedding_layer,
)
from .initialization import (
    ModuleType,
    TileLinear,
    TileMode,
    init_weights,
    tile_embedding,
    tile_linear,
    tile_norm,
)
from .layers import (
    BertAlibiEncoder,
    BertPooler,
    BertPredictionHeadTransform,
    FlexBertCompileUnpadPreNormLayer,
    FlexBertPaddedEncoder,
    FlexBertPaddedParallelPreNormLayer,
    FlexBertPaddedPostNormLayer,
    FlexBertPaddedPreNormLayer,
    FlexBertUnpadEncoder,
    FlexBertUnpadParallelPreNormLayer,
    FlexBertUnpadPostNormLayer,
    FlexBertUnpadPreNormLayer,
    get_encoder_layer,
)
from .mlp import FlexBertGLU, FlexBertMLP, FlexBertParallelGLU
from .normalization import get_norm_layer
from .padding import pad_input, unpad_input
from .loss import get_loss_fn

# TODO: This is not used here, but this is so these files are copied when saving the model in ST/PyLate
from .utils import StrEnum
from .rotary import UnpaddedRotaryEmbedding


logger = logging.getLogger(__name__)

def _count_parameters(model: nn.Module, trainable: bool = True) -> int:
    if trainable:
        return sum(p.numel() for p in model.parameters() if p.requires_grad)
    else:
        return sum(p.numel() for p in model.parameters())


class BertModel(BertPreTrainedModel):
    """Overall BERT model.

    Args:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controlled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
    model = BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """

    def __init__(
        self,
        config,
        add_pooling_layer: bool = True,
    ):
        super(BertModel, self).__init__(config)
        self.embeddings = BertAlibiEmbeddings(config)
        self.encoder = BertAlibiEncoder(config)
        self.pooler = BertPooler(config) if add_pooling_layer else None
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def forward(
        self,
        input_ids: torch.Tensor,
        token_type_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_all_encoded_layers: Optional[bool] = False,
        masked_tokens_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)

        subset_mask = []
        first_col_mask = []

        if masked_tokens_mask is None:
            subset_mask = None
        else:
            first_col_mask = torch.zeros_like(masked_tokens_mask)
            first_col_mask[:, 0] = True
            subset_mask = masked_tokens_mask | first_col_mask

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask,
            output_all_encoded_layers=output_all_encoded_layers,
            subset_mask=subset_mask,
        )

        if masked_tokens_mask is None:
            sequence_output = encoder_outputs[-1]
            pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        else:
            # TD [2022-03-01]: the indexing here is very tricky.
            attention_mask_bool = attention_mask.bool()
            subset_idx = subset_mask[attention_mask_bool]  # type: ignore
            sequence_output = encoder_outputs[-1][masked_tokens_mask[attention_mask_bool][subset_idx]]
            if self.pooler is not None:
                pool_input = encoder_outputs[-1][first_col_mask[attention_mask_bool][subset_idx]]
                pooled_output = self.pooler(pool_input, pool=False)
            else:
                pooled_output = None

        if not output_all_encoded_layers:
            encoder_outputs = sequence_output

        if self.pooler is not None:
            return encoder_outputs, pooled_output

        return encoder_outputs, None


###################
# Bert Heads
###################
class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)
        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0))
        self.decoder.weight = bert_model_embedding_weights

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super().__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


#####################
# Various Bert models
#####################


class BertForPreTraining(BertPreTrainedModel):
    # TBD: Coming in Future Commit
    pass


class BertLMHeadModel(BertPreTrainedModel):
    # TBD: Coming in Future Commit
    pass


class BertForMaskedLM(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if config.is_decoder:
            warnings.warn(
                "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.bert = BertModel(config, add_pooling_layer=False)
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)

        # Initialize weights and apply final processing
        self.post_init()

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        # labels should be a `torch.LongTensor` of shape
        # `(batch_size, sequence_length)`. These are used for computing the
        #  masked language modeling loss.
        #
        # Indices should be in `[-100, 0, ..., config.vocab_size]` (see
        # `input_ids` docstring) Tokens with indices set to `-100` are ignored
        # (masked), the loss is only computed for the tokens with labels in `[0,
        # ..., config.vocab_size]`
        #
        # Prediction scores are only computed for masked tokens and the (bs,
        # seqlen) dimensions are flattened
        if (input_ids is not None) == (inputs_embeds is not None):
            raise ValueError("Must specify either input_ids or input_embeds!")

        if labels is None:
            masked_tokens_mask = None
        else:
            masked_tokens_mask = labels > 0

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            masked_tokens_mask=masked_tokens_mask,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        loss = None
        if labels is not None:
            # Compute loss
            loss_fct = nn.CrossEntropyLoss()
            masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
            loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx])

            assert input_ids is not None, "Coding error; please open an issue"
            batch, seqlen = input_ids.shape[:2]
            prediction_scores = rearrange(
                index_put_first_axis(prediction_scores, masked_token_idx, batch * seqlen),
                "(b s) d -> b s d",
                b=batch,
            )

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MaskedLMOutput(
            loss=loss,
            logits=prediction_scores,
            hidden_states=None,
            attentions=None,
        )

    def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
        input_shape = input_ids.shape
        effective_batch_size = input_shape[0]

        #  add a dummy token
        if self.config.pad_token_id is None:
            raise ValueError("The PAD token should be defined for generation")

        attention_mask = torch.cat(
            [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
            dim=-1,
        )
        dummy_token = torch.full(
            (effective_batch_size, 1),
            self.config.pad_token_id,
            dtype=torch.long,
            device=input_ids.device,
        )
        input_ids = torch.cat([input_ids, dummy_token], dim=1)

        return {"input_ids": input_ids, "attention_mask": attention_mask}


class BertForNextSentencePrediction(BertPreTrainedModel):
    # TBD: Push in future commit
    pass


class BertForSequenceClassification(BertPreTrainedModel):
    """Bert Model transformer with a sequence classification/regression head.

    This head is just a linear layer on top of the pooled output. Used for,
    e.g., GLUE tasks.
    """

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        # labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
        # Labels for computing the sequence classification/regression loss.
        # Indices should be in `[0, ..., config.num_labels - 1]`.
        # If `config.num_labels == 1` a regression loss is computed
        # (mean-square loss). If `config.num_labels > 1` a classification loss
        # is computed (cross-entropy).

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            # Compute loss
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=None,
            attentions=None,
        )


class BertForMultipleChoice(BertPreTrainedModel):
    """
    Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)

        # In multiple choice tasks, all choices are submitted in a batch, and
        # we compute a logit for each option independently. The logits are then
        # normalized in the forward pass to get a probability distribution over
        # the choices.
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.post_init()

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=None,
            attentions=None,
        )


class BertForTokenClassification(BertPreTrainedModel):
    # TBD: Push in future commit
    pass


class BertForQuestionAnswering(BertPreTrainedModel):
    """Bert Model with a span classification head.

    This is used for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden states' output to compute `span start logits`
    and `span end logits`).
    """

    # TBD: Push in future commit


###################
# FlexBert Heads
###################


class FlexBertPredictionHead(nn.Module):
    def __init__(self, config: FlexBertConfig):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_pred_bias)
        self.act = get_act_fn(config.head_pred_act) if config.head_pred_act else nn.Identity()
        self.norm = (
            get_norm_layer(config, compiled_norm=config.compile_model) if config.head_pred_norm else nn.Identity()
        )

    def _init_weights(self, reset_params: bool = False):
        if reset_params:
            self.norm.reset_parameters()
        init_weights(self.config, self.dense, layer_dim=self.config.hidden_size, type_of_module=ModuleType.in_module)

    def reset_parameters(self):
        self._init_weights(reset_params=True)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.norm(self.act(self.dense(hidden_states)))


class FlexBertPoolingHead(nn.Module):
    def __init__(self, config: FlexBertConfig):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_class_bias)
        self.act = get_act_fn(config.head_class_act) if config.head_class_act else nn.Identity()
        self.norm = get_norm_layer(config) if config.head_class_norm else nn.Identity()
        self.drop = torch.nn.Dropout(config.head_class_dropout) if config.head_class_dropout > 0 else nn.Identity()
        self.pooling_type = config.pooling_type

    def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
        if pool:
            if self.pooling_type == "cls":
                output = hidden_states[:, 0]
            elif self.pooling_type == "mean":
                output = hidden_states.mean(dim=1)
            elif self.pooling_type == "max":
                output = hidden_states.max(dim=1)[0]
        else:
            output = hidden_states

        return self.drop(self.norm(self.act(self.dense(output))))

    def _init_weights(self, reset_params: bool = False):
        init_weights(self.config, self.dense, self.config.hidden_size, type_of_module=ModuleType.out_module)
        if reset_params and hasattr(self.norm, "reset_parameters"):
            self.norm.reset_parameters()

    def reset_parameters(self):
        self._init_weights(reset_params=True)


###################
# FlexBert Models
###################


@dataclass
class MaskedLMOutput(ModelOutput):
    """
    Base class for masked language models outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Masked language modeling (MLM) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    indices: Optional[torch.LongTensor] = None
    cu_seqlens: Optional[torch.LongTensor] = None
    max_seqlen: Optional[int] = None
    batch_size: Optional[int] = None
    seq_len: Optional[int] = None
    labels: Optional[torch.LongTensor] = None


@dataclass
class MaskedLMOutputZLoss(ModelOutput):
    """
    Base class for masked language models outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Masked language modeling (MLM) loss.
        ce_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Cross entropy loss.
        z_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Z loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        indices (`torch.LongTensor` of shape `(batch_size,)`):
            Indices of the tokens to be masked.
    """

    loss: Optional[torch.FloatTensor] = None
    ce_loss: Optional[torch.FloatTensor] = None
    z_loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    indices: Optional[torch.LongTensor] = None
    cu_seqlens: Optional[torch.LongTensor] = None
    max_seqlen: Optional[int] = None
    batch_size: Optional[int] = None
    seq_len: Optional[int] = None
    labels: Optional[torch.LongTensor] = None


class FlexBertPreTrainedModel(BertPreTrainedModel):
    """
    An abstract class to handle custom weights initialization of modules
    """

    def _init_module_weights(self, module: nn.Module):
        """
        Custom weight init of modules using src.bert_layers.initialization.init_weights
        Currently only supports init of embedding modules
        """
        assert isinstance(module, nn.Module)
        if isinstance(module, nn.Embedding):
            init_weights(self.config, module, type_of_module=ModuleType.emb)
        else:
            raise NotImplementedError("Custom weight init for the given module is not supported")


class FlexBertModel(FlexBertPreTrainedModel):
    """Overall BERT model.

    Args:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controlled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
    model = BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__(config)
        self.embeddings = get_embedding_layer(config)
        self.encoder = get_encoder_layer(config)
        if config.final_norm:
            # if we use prenorm attention we need to add a final norm
            self.final_norm = get_norm_layer(config)
        else:
            self.final_norm = None
        self.unpad_embeddings = config.unpad_embeddings
        self.is_decoder = False

    def post_init(self):
        self._init_weights(reset_params=False)
        self._backward_compatibility_gradient_checkpointing()

    def get_input_embeddings(self):
        return self.embeddings.tok_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.tok_embeddings = value

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        **kwargs,
    ) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
        if attention_mask is None and not self.is_decoder:
            attention_mask = torch.ones_like(input_ids)

        embedding_output = self.embeddings(input_ids, position_ids)

        encoder_outputs = self.encoder(
            hidden_states=embedding_output,
            attention_mask=attention_mask,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )

        if self.final_norm is not None:
            encoder_outputs = self.final_norm(encoder_outputs)
        return encoder_outputs

    def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
        assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
        if module:
            self._init_module_weights(module)
        else:
            assert isinstance(reset_params, bool)
            self.embeddings._init_weights(reset_params=reset_params)
            self.encoder._init_weights(reset_params=reset_params)

            if reset_params and self.config.final_norm:
                self.final_norm.reset_parameters()

    def reset_parameters(self):
        self._init_weights(reset_params=True)

    def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
        """Returns the number of parameters in the model.

        Args:
            count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
            trainable: only count trainable parameters.
        """
        params = sum([_count_parameters(layer, trainable) for layer in self.encoder.layers])
        if count_embeddings:
            params += _count_parameters(self.embeddings, trainable)
            if hasattr(self.embeddings, "position_embeddings"):
                params -= _count_parameters(self.embeddings.position_embeddings, trainable)
        return params


class FlexBertForMaskedLM(FlexBertPreTrainedModel):
    def __init__(self, config: FlexBertConfig):
        super().__init__(config)
        self.bert = FlexBertModel(config)
        self.head = FlexBertPredictionHead(config)

        if config.tie_word_embeddings:
            decoder_weights = self.bert.embeddings.tok_embeddings.weight
        else:
            decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
        self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
        self.decoder.weight = decoder_weights

        self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
        self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
        self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
        self.unpad_embeddings = config.unpad_embeddings
        self.pad_logits = config.pad_logits
        self.compile_model = config.compile_model
        self.masked_prediction = config.masked_prediction

        # Initialize weights and apply final processing
        self._init_weights(reset_params=False)

    def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
        assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
        if module:
            self._init_module_weights(module)
        else:
            assert isinstance(reset_params, bool)
            self.bert._init_weights(reset_params=reset_params)
            self.head._init_weights(reset_params=reset_params)

            # Output weights.
            if not self.config.tie_word_embeddings:
                init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("FlexBERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def get_output_embeddings(self):
        return self.decoder

    def set_output_embeddings(self, new_embeddings):
        self.decoder = new_embeddings

    @torch.no_grad()
    def unpad_inputs(
        self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
    ):
        return unpad_input(input_ids, attention_mask, position_ids, labels)

    @torch.no_grad()
    def pad_inputs(
        self,
        inputs: torch.Tensor,
        indices: torch.Tensor,
        batch_size: int,
        seqlen: int,
        labels: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
    ):
        return pad_input(
            inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
        )

    @torch.compile(dynamic=True)
    def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
        return self.decoder(self.head(output))

    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        # labels should be a `torch.LongTensor` of shape
        # `(batch_size, sequence_length)`. These are used for computing the
        #  masked language modeling loss.
        #
        # Indices should be in `[-100, 0, ..., config.vocab_size]` (see
        # `input_ids` docstring) Tokens with indices set to `-100` are ignored
        # (masked), the loss is only computed for the tokens with labels in `[0,
        # ..., config.vocab_size]`
        #
        # Prediction scores are only computed for masked tokens and the (bs,
        # seqlen) dimensions are flattened

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
            batch_size, seq_len = input_ids.shape[:2]
            input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
                input_ids, attention_mask, position_ids, labels
            )
        

        output = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )

        if self.masked_prediction and labels is not None:
            # flatten labels and output first
            labels = labels.view(-1)
            output = output.view(labels.shape[0], -1)

            # then filter out the non-masked tokens
            mask_tokens = labels != self.loss_fn.ignore_index
            output = output[mask_tokens]
            labels = labels[mask_tokens]

        if self.compile_model:
            logits = self.compiled_head(output)
        else:
            logits = self.decoder(self.head(output))

        loss = None
        if labels is not None:
            if not self.masked_prediction:
                labels = labels.view(-1)
                logits = logits.view(labels.shape[0], -1)

            if self.return_z_loss:
                loss, z_loss = self.loss_fn(logits, labels)
                if self.pad_logits:
                    return MaskedLMOutputZLoss(
                        loss=loss,
                        ce_loss=loss.detach().clone() - z_loss,
                        z_loss=z_loss,
                        logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
                        hidden_states=None,
                        attentions=None,
                    )
                else:
                    return MaskedLMOutputZLoss(
                        loss=loss,
                        ce_loss=loss.detach().clone() - z_loss,
                        z_loss=z_loss,
                        logits=logits,
                        hidden_states=None,
                        attentions=None,
                        indices=indices,
                        cu_seqlens=cu_seqlens,
                        max_seqlen=max_seqlen,
                        batch_size=batch_size,
                        seq_len=seq_len,
                        labels=labels,
                    )
            else:
                loss = self.loss_fn(logits, labels)

        if self.pad_logits:
            return MaskedLMOutput(
                loss=loss,
                logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
                hidden_states=None,
                attentions=None,
            )
        else:
            return MaskedLMOutput(
                loss=loss,
                logits=logits,
                hidden_states=None,
                attentions=None,
                indices=indices,
                cu_seqlens=cu_seqlens,
                max_seqlen=max_seqlen,
                batch_size=batch_size,
                seq_len=seq_len,
                labels=labels,
            )

    def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
        input_shape = input_ids.shape
        effective_batch_size = input_shape[0]

        #  add a dummy token
        if self.config.pad_token_id is None:
            raise ValueError("The PAD token should be defined for generation")

        attention_mask = torch.cat(
            [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
            dim=-1,
        )
        dummy_token = torch.full(
            (effective_batch_size, 1),
            self.config.pad_token_id,
            dtype=torch.long,
            device=input_ids.device,
        )
        input_ids = torch.cat([input_ids, dummy_token], dim=1)

        return {"input_ids": input_ids, "attention_mask": attention_mask}

    def get_number_parameters(
        self, count_embeddings: bool = True, count_decoder: bool = False, trainable: bool = True
    ) -> int:
        """Returns the number of parameters in the model.

        Args:
            count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
            count_decoder: count the parameters in the decoder layer if weights are not tied.
            trainable: only count trainable parameters.
        """
        params = self.bert.get_number_parameters(count_embeddings, trainable)
        params += _count_parameters(self.head, trainable)
        if count_decoder and not self.config.tie_word_embeddings:
            params += _count_parameters(self.decoder, trainable)
        return params


class FlexBertForSequenceClassification(FlexBertPreTrainedModel):
    """Bert Model transformer with a sequence classification/regression head.

    This head is just a linear layer on top of the pooled output. Used for,
    e.g., GLUE tasks.
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = FlexBertModel(config)
        self.head = FlexBertPoolingHead(config)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self._init_weights(reset_params=False)

    def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
        assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
        if module:
            self._init_module_weights(module)
        else:
            assert isinstance(reset_params, bool)
            self.bert._init_weights(reset_params=reset_params)
            self.head._init_weights(reset_params=reset_params)
            init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        # labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
        # Labels for computing the sequence classification/regression loss.
        # Indices should be in `[0, ..., config.num_labels - 1]`.
        # If `config.num_labels == 1` a regression loss is computed
        # (mean-square loss). If `config.num_labels > 1` a classification loss
        # is computed (cross-entropy).

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        output = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )

        pooled_output = self.head(output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            # Compute loss
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + output
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=None,
            attentions=None,
        )

    def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
        """Returns the number of parameters in the model.

        Args:
            count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
            trainable: only count trainable parameters.
        """
        params = self.bert.get_number_parameters(count_embeddings, trainable)
        params += _count_parameters(self.head, trainable)
        params += _count_parameters(self.classifier, trainable)
        return params


class FlexBertForMultipleChoice(FlexBertPreTrainedModel):
    """
    Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = FlexBertModel(config)
        self.head = FlexBertPoolingHead(config)

        # In multiple choice tasks, all choices are submitted in a batch, and
        # we compute a logit for each option independently. The logits are then
        # normalized in the forward pass to get a probability distribution over
        # the choices.
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self._init_weights(reset_params=False)

    def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
        assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
        if module:
            self._init_module_weights(module)
        else:
            assert isinstance(reset_params, bool)
            self.bert._init_weights(reset_params=reset_params)
            self.head._init_weights(reset_params=reset_params)
            init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        # labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
        # Labels for computing the sequence classification/regression loss.
        # Indices should be in `[0, ..., config.num_labels - 1]`.
        # If `config.num_labels == 1` a regression loss is computed
        # (mean-square loss). If `config.num_labels > 1` a classification loss
        # is computed (cross-entropy).

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

        output = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )

        pooled_output = self.head(output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + output
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=None,
            attentions=None,
        )

    def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
        """Returns the number of parameters in the model.

        Args:
            count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
            trainable: only count trainable parameters.
        """
        params = self.bert.get_number_parameters(count_embeddings, trainable)
        params += _count_parameters(self.head, trainable)
        params += _count_parameters(self.classifier, trainable)
        return params


class FlexBertForCausalLM(FlexBertPreTrainedModel):
    config_class = FlexBertConfig
    """Bert Model transformer with a LM head.

    This head is just a standard LM head module. Used for causal language modeling tasks.
    """

    def __init__(self, config: FlexBertConfig):
        super().__init__(config)
        self.bert = FlexBertModel(config)
        self.bert.is_decoder = True
        self.lm_head = FlexBertPredictionHead(config)

        if config.tie_word_embeddings:
            decoder_weights = self.bert.embeddings.tok_embeddings.weight
        else:
            decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
        self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
        self.decoder.weight = decoder_weights

        self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
        self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
        self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
        self.unpad_embeddings = config.unpad_embeddings
        self.pad_logits = config.pad_logits
        self.compile_model = config.compile_model
        self.masked_prediction = config.masked_prediction

        # Initialize weights and apply final processing
        self._init_weights(reset_params=False)

    def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
        assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
        if module is not None:
            # Add basic initialization for common module types
            if isinstance(module, (nn.Linear, nn.Embedding)):
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
                if isinstance(module, nn.Linear) and module.bias is not None:
                    module.bias.data.zero_()
            elif isinstance(module, nn.LayerNorm):
                module.bias.data.zero_()
                module.weight.data.fill_(1.0)
        else:
            assert isinstance(reset_params, bool)
            self.bert._init_weights(reset_params=reset_params)
            self.lm_head._init_weights(reset_params=reset_params)

            if not self.config.tie_word_embeddings:
                init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)

    @classmethod
    def from_composer(
        cls,
        pretrained_checkpoint,
        state_dict=None,
        cache_dir=None,
        from_tf=False,
        config=None,
        *inputs,
        **kwargs,
    ):
        """Load from pre-trained."""
        model = cls(config, *inputs, **kwargs)
        if from_tf:
            raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")

        state_dict = torch.load(pretrained_checkpoint)
        # If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
        consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
        if len(unexpected_keys) > 0:
            logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")

        return model


    def get_output_embeddings(self):
        return self.decoder

    def set_output_embeddings(self, new_embeddings):
        self.decoder = new_embeddings

    @torch.no_grad()
    def unpad_inputs(
        self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
    ):
        return unpad_input(input_ids, attention_mask, position_ids, labels)

    @torch.no_grad()
    def pad_inputs(
        self,
        inputs: torch.Tensor,
        indices: torch.Tensor,
        batch_size: int,
        seqlen: int,
        labels: Optional[torch.Tensor] = None,
        ignore_index: int = -100,
    ):
        return pad_input(
            inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
        )

    @torch.compile(dynamic=True)
    def compiled_lm_head(self, output: torch.Tensor) -> torch.Tensor:
        return self.decoder(self.lm_head(output))

    def forward(
        self,
        input_ids: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        indices: Optional[torch.Tensor] = None,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[int] = None,
        batch_size: Optional[int] = None,
        seq_len: Optional[int] = None,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
        # labels should be a `torch.LongTensor` of shape
        # `(batch_size, sequence_length)`. These are used for computing the
        #  masked language modeling loss.
        #
        # Indices should be in `[-100, 0, ..., config.vocab_size]` (see
        # `input_ids` docstring) Tokens with indices set to `-100` are ignored
        # (masked), the loss is only computed for the tokens with labels in `[0,
        # ..., config.vocab_size]`
        #
        # Prediction scores are only computed for masked tokens and the (bs,
        # seqlen) dimensions are flattened
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
            batch_size, seq_len = input_ids.shape[:2]
            if attention_mask is None:
                # create all ones, except for padding (TODO?)
                attention_mask = torch.ones_like(input_ids)
            input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
                input_ids, attention_mask, position_ids, labels
            )

        hidden_states = self.bert(
            input_ids,
            attention_mask=None, # let FA do this
            position_ids=position_ids,
            indices=indices,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )

        if self.compile_model:
            logits = self.compiled_lm_head(hidden_states)
        else:
            logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            if cu_seqlens is not None:                
                shift_labels = input_ids[1:].clone()    
                loss_logits = logits[:-1]  # Only shift for loss

                # Mask boundaries, so eos doesn't predict bos
                for i in range(len(cu_seqlens) - 1):
                    boundary_pos = cu_seqlens[i+1] - 1
                    if boundary_pos < len(shift_labels):
                        shift_labels[boundary_pos] = -100

                # NOTE: no padding or mask in there for now
                assert 50283 not in shift_labels, f"PAD token found in shift_labels: {shift_labels}"
                assert 50284 not in shift_labels, f"MASK token found in shift_labels: {shift_labels}"
                assert shift_labels.shape[0] == loss_logits.shape[0] # Verify shapes align                    
            else:
                # Padded case: simple shift
                shift_labels = input_ids[..., 1:].contiguous()
                loss_logits = logits[..., :-1, :].contiguous()
                # mask out PAD tokens in the shift_labels
                mask = (shift_labels == 50283)
                shift_labels = torch.where(mask, torch.tensor(-100, device=shift_labels.device), shift_labels)
                assert shift_labels.shape[0] == loss_logits.shape[0] # Verify shapes align

            # For both cases, we'll use the shifted input_ids as our labels
            labels = shift_labels
            
            # Flatten the tokens
            loss = self.loss_fn(loss_logits.view(-1, loss_logits.size(-1)), shift_labels.view(-1))

        if self.pad_logits:
            return CausalLMOutput(
                loss=loss,
                logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
                hidden_states=hidden_states,
                attentions=None,
            )
        else:
            return CausalLMOutput(
                loss=loss,
                logits=logits,
                hidden_states=hidden_states,
                attentions=None,
            )

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        **kwargs
    ) -> dict:
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        # Calculate sequence-local positions
        seqlens = attention_mask.sum(dim=-1)  # Get length of each sequence
        position_ids = torch.zeros_like(input_ids)
        for i in range(len(seqlens)):
            position_ids[i, :seqlens[i]] = torch.arange(seqlens[i], device=input_ids.device)
            
            
        batch_size, seq_len = input_ids.shape[:2]
        if self.unpad_embeddings:
            input_ids, indices, cu_seqlens, max_seqlen, position_ids, _ = self.unpad_inputs(
                input_ids, attention_mask, position_ids, None
            )
        else:
            indices = torch.arange(seq_len, device=input_ids.device).unsqueeze(0).repeat(batch_size, 1)
            cu_seqlens = None
            max_seqlen = None
        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "position_ids": position_ids,
            "indices": indices,
            "cu_seqlens": cu_seqlens,
            "max_seqlen": max_seqlen,
            "batch_size": batch_size,
        }

    def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
        """Returns the number of parameters in the model.

        Args:
            count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
            trainable: only count trainable parameters.
        """
        params = self.bert.get_number_parameters(count_embeddings, trainable)
        params += _count_parameters(self.lm_head, trainable)
        return params

FlexBertForCausalLM.register_for_auto_class("AutoModelForCausalLM")

def init_model_from_pretrained(
    pretrained_model: FlexBertModel,
    new_model: FlexBertModel,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Initialize the new model from the pretrained model.

    This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
    The new model must have the same or more layers and the same or larger dimensions than the pretrained model.

    Args:
        pretrained_model (FlexBertModel): The smaller, pre-trained model
        new_model (FlexBertModel): The larger model to be initialized
        mode (Union[str, TileMode]): The Phi-style weight tiling mode to use

    This function assumes that the new_model has more layers and a larger hidden size
    than the pretrained_model, but the same vocabulary size.
    """

    # Tile embeddings
    assert isinstance(
        new_model.embeddings, type(pretrained_model.embeddings)
    ), f"Pretrained and new_model layers must be the same type, got {type(new_model.embeddings)} and {type(pretrained_model.embeddings)}"
    assert isinstance(
        new_model.embeddings,
        (FlexBertAbsoluteEmbeddings, FlexBertSansPositionEmbeddings, FlexBertCompiledSansPositionEmbeddings),
    ), f"Unsupported embedding layer type: {type(new_model.embeddings)}"

    tile_embedding(pretrained_model.embeddings.tok_embeddings, new_model.embeddings.tok_embeddings, mode=mode)
    if isinstance(pretrained_model.embeddings, FlexBertAbsoluteEmbeddings):
        tile_embedding(pretrained_model.embeddings.pos_embeddings, new_model.embeddings.pos_embeddings, mode=mode)

    if hasattr(pretrained_model.embeddings, "norm"):
        tile_norm(pretrained_model.embeddings.norm, new_model.embeddings.norm, mode=mode)

    # Tile encoder layers
    assert isinstance(
        pretrained_model.encoder, (FlexBertUnpadEncoder, FlexBertPaddedEncoder)
    ), f"Unsupported encoder layer type: {type(pretrained_model.encoder)}"
    assert isinstance(
        new_model.encoder, type(pretrained_model.encoder)
    ), f"Pretrained and new_model encoder layers must be the same type, got {type(new_model.encoder)} and {type(pretrained_model.encoder)}"

    # Calculate the layer mapping
    pretrained_layers = len(pretrained_model.encoder.layers)
    new_layers = len(new_model.encoder.layers)
    layer_mapping = [round(i * pretrained_layers / new_layers) for i in range(new_layers)]

    # Initialize layers
    for new_model_idx, pretrained_idx in enumerate(layer_mapping):
        new_model_layer = new_model.encoder.layers[new_model_idx]
        pretrained_layer = pretrained_model.encoder.layers[pretrained_idx]

        # first tile the PreNorm/PostNorm layers
        assert isinstance(
            new_model_layer, type(pretrained_layer)
        ), f"Pretrained and new_model prenorm/postnorm layers must be the same type, got {type(new_model_layer)} and {type(pretrained_layer)}"
        assert isinstance(
            new_model_layer,
            (
                FlexBertUnpadPreNormLayer,
                FlexBertCompileUnpadPreNormLayer,
                FlexBertUnpadParallelPreNormLayer,
                FlexBertUnpadPostNormLayer,
                FlexBertPaddedPreNormLayer,
                FlexBertPaddedParallelPreNormLayer,
                FlexBertPaddedPostNormLayer,
            ),
        ), f"Unsupported prenorm/postnorm layer type: {type(new_model_layer)}"

        # First tile the normalization layers
        if hasattr(pretrained_layer, "attn_norm"):
            tile_norm(pretrained_layer.attn_norm, new_model_layer.attn_norm, mode=mode)
        if hasattr(pretrained_layer, "norm"):
            tile_norm(pretrained_layer.norm, new_model_layer.norm, mode=mode)
        if hasattr(pretrained_layer, "mlp_norm"):
            tile_norm(pretrained_layer.mlp_norm, new_model_layer.mlp_norm, mode=mode)

        # Then tile the attention & mlp layers
        assert isinstance(
            new_model_layer.attn, type(pretrained_layer.attn)
        ), f"Pretrained and new_model attention layers must be the same type, got {type(new_model_layer.attn)} and {type(pretrained_layer.attn)}"

        # first try the parallel attention layers
        if isinstance(pretrained_layer, (FlexBertUnpadParallelPreNormLayer, FlexBertPaddedParallelPreNormLayer)):
            assert isinstance(
                pretrained_layer.attn,
                (
                    FlexBertUnpadParallelAttention,
                    FlexBertPaddedParallelAttention,
                    FlexBertUnpadRopeParallelAttention,
                    FlexBertPaddedRopeParallelAttention,
                ),
            ), f"Parallel prenorm layer must have parallel attention layer: {type(pretrained_layer.attn)}"
            if not isinstance(pretrained_layer.mlp, (FlexBertParallelGLU)):
                raise ValueError(f"Parallel prenorm layer must have parallel MLP layer: {type(pretrained_layer.mlp)}")
            tile_linear(
                pretrained_layer.Wqkvff,
                new_model_layer.Wqkvff,
                linear_type=TileLinear.wqkvff,
                mode=mode,
                pretrained_attn_size=pretrained_layer.attn_size,
                pretrained_mlp_size=pretrained_layer.mlp_size,
                new_attn_size=new_model_layer.attn_size,
                new_mlp_size=new_model_layer.mlp_size,
                wqkvff_is_glu=True,
            )

        # then try the fused attention layers
        elif isinstance(
            pretrained_layer.attn,
            (
                FlexBertUnpadAttention,
                FlexBertPaddedAttention,
                FlexBertUnpadRopeAttention,
                FlexBertPaddedRopeAttention,
            ),
        ):
            tile_linear(pretrained_layer.attn.Wqkv, new_model_layer.attn.Wqkv, linear_type=TileLinear.wqkv, mode=mode)
        else:
            raise ValueError(f"Unsupported attention layer type: {type(pretrained_layer.attn)}")

        # finally, tile the attention output layer
        tile_linear(pretrained_layer.attn.Wo, new_model_layer.attn.Wo, linear_type=TileLinear.default, mode=mode)

        # tile the mlp layer if the model is not using parallel attention layers
        if not isinstance(pretrained_layer.mlp, (FlexBertMLP, FlexBertGLU, FlexBertParallelGLU)):
            raise ValueError(f"Unsupported MLP layer type: {type(pretrained_layer.mlp)}")
        assert isinstance(
            new_model_layer.mlp, type(pretrained_layer.mlp)
        ), f"Pretrained and new_model mlp layers must be the same type, got {type(new_model_layer.mlp)} and {type(pretrained_layer.mlp)}"

        # already tiled the parallel glu layer if it exists, so only need to handle mlp & glu Wi
        if isinstance(pretrained_layer.mlp, FlexBertGLU):
            tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.glu, mode=mode)
        elif isinstance(pretrained_layer.mlp, FlexBertMLP):
            tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.default, mode=mode)
        # tile the output for both ParallelGLU and MLP/GLU
        tile_linear(pretrained_layer.mlp.Wo, new_model_layer.mlp.Wo, linear_type=TileLinear.default, mode=mode)


def init_mlm_model_from_pretrained(
    config: FlexBertConfig,
    pretrained_model: FlexBertForMaskedLM,
    new_model: FlexBertForMaskedLM,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Initialize the new model from the pretrained model.

    This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
    The new model must have the same or more layers and the same or larger dimensions than the pretrained model.

    Args:
        config (FlexBertConfig): The configuration of the new_model
        pretrained_model (FlexBertForMaskedLM): The smaller, pre-trained model
        new_model (FlexBertForMaskedLM): The larger model to be initialized from the pretrained model
        mode (Union[str, TileMode]): The Phi-style weight tiling mode to use

    This function assumes that the new_model has more layers and a larger hidden size
    than the pretrained_model, but the same vocabulary size.
    """
    init_model_from_pretrained(pretrained_model.bert, new_model.bert, mode=mode)

    # TODO: uncomment this when the repo is turned into a pip installable package
    # if not isinstance(pretrained_model.head, FlexBertPredictionHead):
    #     raise ValueError(f"Pretrained model must have a prediction head: {type(pretrained_model.head)}")
    # if not isinstance(new_model.head, FlexBertPredictionHead):
    #     raise ValueError(f"New model must have a prediction head: {type(new_model.head)}")

    # tile the prediction head
    tile_linear(pretrained_model.head.dense, new_model.head.dense, linear_type=TileLinear.default, mode=mode)
    tile_norm(pretrained_model.head.norm, new_model.head.norm, mode=mode)

    # setup weight tying
    if config.tie_word_embeddings:
        new_model.decoder.weight = new_model.bert.embeddings.tok_embeddings.weight
        tile_linear(
            pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode, bias_only=True
        )
    else:
        tile_linear(pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode)