test-flex-gpt / configuration_bert.py
oweller2
added in file
204da06
raw
history blame
14.8 kB
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
import warnings
from transformers import BertConfig as TransformersBertConfig
class BertConfig(TransformersBertConfig):
def __init__(
self,
alibi_starting_size: int = 512,
normalization: str = "layernorm",
attention_probs_dropout_prob: float = 0.0,
head_pred_act: str = "gelu",
deterministic_fa2: bool = False,
allow_embedding_resizing: bool = False,
**kwargs,
):
"""Configuration class for MosaicBert.
Args:
alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
create when initializing the model. You should be able to ignore this parameter in most cases.
Defaults to 512.
attention_probs_dropout_prob (float): By default, turn off attention dropout in MosaicBERT
Note that the custom Triton Flash Attention with ALiBi implementation does not support droput.
However, Flash Attention 2 supports ALiBi and dropout https://github.com/Dao-AILab/flash-attention
embed_dropout_prob (float): Dropout probability for the embedding layer.
attn_out_dropout_prob (float): Dropout probability for the attention output layer.
mlp_dropout_prob (float): Dropout probability for the MLP layer.
allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
"""
super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
self.alibi_starting_size = alibi_starting_size
self.normalization = normalization
self.head_pred_act = head_pred_act
self.deterministic_fa2 = deterministic_fa2
self.allow_embedding_resizing = allow_embedding_resizing
class FlexBertConfig(TransformersBertConfig):
def __init__(
self,
attention_layer: str = "base",
attention_probs_dropout_prob: float = 0.0,
attn_out_bias: bool = False,
attn_out_dropout_prob: float = 0.0,
attn_qkv_bias: bool = False,
bert_layer: str = "prenorm",
decoder_bias: bool = True,
embed_dropout_prob: float = 0.0,
embed_norm: bool = True,
final_norm: bool = False,
embedding_layer: str = "absolute_pos",
encoder_layer: str = "base",
loss_function: str = "cross_entropy",
loss_kwargs: dict = {},
mlp_dropout_prob: float = 0.0,
mlp_in_bias: bool = False,
mlp_layer: str = "mlp",
mlp_out_bias: bool = False,
norm_kwargs: dict = {},
normalization: str = "rmsnorm",
padding: str = "unpadded",
head_class_act: str = "silu",
head_class_bias: bool = False,
head_class_dropout: float = 0.0,
head_class_norm: str = False,
head_pred_act: str = "silu",
head_pred_bias: bool = False,
head_pred_dropout: float = 0.0,
head_pred_norm: bool = True,
pooling_type: str = "cls",
rotary_emb_dim: int | None = None,
rotary_emb_base: float = 10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved: bool = False,
use_fa2: bool = True,
use_sdpa_attn_mask: bool = False,
allow_embedding_resizing: bool = False,
init_method: str = "default",
init_std: float = 0.02,
init_cutoff_factor: float = 2.0,
init_small_embedding: bool = False,
initial_attention_layer: str | None = None,
initial_bert_layer: str | None = None,
initial_mlp_layer: str | None = None,
num_initial_layers: int = 1,
skip_first_prenorm: bool = False,
deterministic_fa2: bool = False,
sliding_window: int = -1,
global_attn_every_n_layers: int = -1,
local_attn_rotary_emb_base: float = -1,
local_attn_rotary_emb_dim: int | None = None,
unpad_embeddings: bool = False,
pad_logits: bool = False,
compile_model: bool = False,
masked_prediction: bool = False,
casual_mask: bool = False,
**kwargs,
):
"""
Args:
attention_layer (str): Attention layer type.
attention_probs_dropout_prob (float): Dropout probability for attention probabilities.
attn_out_bias (bool): use bias in attention output projection.
attn_out_dropout_prob (float): Dropout probability for attention output.
attn_qkv_bias (bool): use bias for query, key, value linear layer(s).
bert_layer (str): BERT layer type.
decoder_bias (bool): use bias in decoder linear layer.
embed_dropout_prob (float): Dropout probability for embeddings.
embed_norm (bool): Normalize embedding output.
final_norm (bool): Add normalization after the final encoder layer and before head.
embedding_layer (str): Embedding layer type.
encoder_layer (str): Encoder layer type.
loss_function (str): Loss function to use.
loss_kwargs (dict): Keyword arguments for loss function.
mlp_dropout_prob (float): Dropout probability for MLP layers.
mlp_in_bias (bool): Use bias in MLP input linear layer.
mlp_layer (str): MLP layer type.
mlp_out_bias (bool): Use bias in MLP output linear layer.
norm_kwargs (dict): Keyword arguments for normalization layers.
normalization (str): Normalization type.
padding (str): Unpad inputs. Best with `use_fa2=True`.
head_class_act (str): Activation function for classification head.
head_class_bias (bool): Use bias in classification head linear layer(s).
head_class_dropout (float): Dropout probability for classification head.
head_class_norm (str): Normalization type for classification head.
head_pred_act (str): Activation function for prediction head.
head_pred_bias (bool): Use bias in prediction head linear layer(s).
head_pred_dropout (float): Dropout probability for prediction head.
head_pred_norm (bool): Normalize prediction head output.
pooling_type (str): Pooling type.
rotary_emb_dim (int | None): Rotary embedding dimension.
rotary_emb_base (float): Rotary embedding base.
rotary_emb_scale_base (float): Rotary embedding scale base.
rotary_emb_interleaved (bool): Use interleaved rotary embeddings.
use_fa2 (bool): Use FlashAttention2. Requires flash_attn package.
use_sdpa_attn_mask (bool): Pass a mask to SDPA. This will prevent SDPA from using the PyTorch FA2 kernel.
allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
init_method (str): Model layers initialization method.
init_std (float): Standard deviation for initialization. Used for normal and full_megatron init.
init_cutoff_factor (float): Cutoff factor for initialization. Used for normal and full_megatron init.
init_small_embedding (bool): Initialize embeddings with RWKV small init.
initial_attention_layer (str | None): Replace first `num_initial_layers` attention_layer instance with this layer.
initial_bert_layer (str | None): Replace first `num_initial_layers` bert_layer instance with this layer.
initial_mlp_layer (str | None): Replace first `num_initial_layers` mlp_layer instance with this layer.
num_initial_layers (int): Number of initial layers to set via `initial_attention_layer`, `initial_bert_layer`, and `initial_mlp_layer`.
skip_first_prenorm (bool): Skip pre-normalization for the first bert layer. Requires `embed_norm=True`.
deterministic_fa2 (bool): Use Flash Attention 2 deterministic mode. This is slower then the default non-deterministic mode.
sliding_window (int): Use sliding window attention with window size `n`. -1 to disable. Window size split between the left and right context. Only supports FA2.
global_attn_every_n_layers (int): Use global attention every `n` layers and sliding window for the rest. -1 to disable.
local_attn_rotary_emb_base (float): Rotary embedding base for local attention. -1 to disable and use `rotary_emb_base` for all layers.
local_attn_rotary_emb_dim (int | None): Rotary embedding dimension for local attention. None to disable and use `rotary_emb_dim` for all layers.
unpad_embeddings (bool): Unpad inputs before the embedding layer.
pad_logits (bool): Pad logits after the calculating the loss.
compile_model (bool): Compile the subset of the model which can be compiled.
masked_prediction (bool): Use only pass the masked tokens throught the final MLM layers
casual_mask (bool): Use a casual mask, defaulting to false.
**kwargs: Additional keyword arguments.
"""
super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
self.attention_layer = attention_layer
self.attn_out_bias = attn_out_bias
self.attn_out_dropout_prob = attn_out_dropout_prob
self.attn_qkv_bias = attn_qkv_bias
self.bert_layer = bert_layer
self.decoder_bias = decoder_bias
self.embed_dropout_prob = embed_dropout_prob
self.embed_norm = embed_norm
self.final_norm = final_norm
self.embedding_layer = embedding_layer
self.encoder_layer = encoder_layer
self.loss_function = loss_function
self.loss_kwargs = loss_kwargs
self.mlp_dropout_prob = mlp_dropout_prob
self.mlp_in_bias = mlp_in_bias
self.mlp_layer = mlp_layer
self.mlp_out_bias = mlp_out_bias
self.norm_kwargs = norm_kwargs
self.normalization = normalization
self.padding = padding
self.head_class_act = head_class_act
self.head_class_bias = head_class_bias
self.head_class_dropout = head_class_dropout
self.head_class_norm = head_class_norm
self.head_pred_act = head_pred_act
self.head_pred_bias = head_pred_bias
self.head_pred_dropout = head_pred_dropout
self.head_pred_norm = head_pred_norm
self.pooling_type = pooling_type
self.rotary_emb_dim = rotary_emb_dim
self.rotary_emb_base = rotary_emb_base
self.rotary_emb_scale_base = rotary_emb_scale_base
self.rotary_emb_interleaved = rotary_emb_interleaved
self.use_fa2 = use_fa2
self.use_sdpa_attn_mask = use_sdpa_attn_mask
self.allow_embedding_resizing = allow_embedding_resizing
self.init_method = init_method
self.init_std = init_std
self.init_cutoff_factor = init_cutoff_factor
self.init_small_embedding = init_small_embedding
self.initial_attention_layer = initial_attention_layer
self.initial_bert_layer = initial_bert_layer
self.initial_mlp_layer = initial_mlp_layer
self.num_initial_layers = num_initial_layers
self.skip_first_prenorm = skip_first_prenorm
self.deterministic_fa2 = deterministic_fa2
self.sliding_window = sliding_window
self.global_attn_every_n_layers = global_attn_every_n_layers
self.local_attn_rotary_emb_base = local_attn_rotary_emb_base
self.local_attn_rotary_emb_dim = local_attn_rotary_emb_dim
self.unpad_embeddings = unpad_embeddings
self.pad_logits = pad_logits
self.compile_model = compile_model
self.masked_prediction = masked_prediction
self.casual_mask = casual_mask
if loss_kwargs.get("return_z_loss", False):
if loss_function != "fa_cross_entropy":
raise ValueError("loss_function must be 'fa_cross_entropy' when return_z_loss is True")
if loss_kwargs.get("lse_square_scale", 0) <= 0:
raise ValueError(
"lse_square_scale must be passed to `loss_kwargs` and must be greater than 0 for z_loss"
)
if loss_kwargs.get("inplace_backward", False):
self.loss_kwargs["inplace_backward"] = False
warnings.warn("`inplace_backward=True` will cause incorrect metrics. Automatically setting to False.")
if global_attn_every_n_layers > 0 and (self.num_hidden_layers - 1) % global_attn_every_n_layers != 0:
raise ValueError(
f"{global_attn_every_n_layers=} must be a divisor of one less than {self.num_hidden_layers=}"
)
if self.sliding_window != -1:
if not self.use_fa2:
raise ValueError("Sliding window attention is only supported with FlashAttention2")
if self.sliding_window % 2 != 0 and self.sliding_window % 64 != 0:
raise ValueError(
f"Sliding window must be an even number and divisible by 64: {self.sliding_window=} {self.sliding_window % 64} {self.sliding_window % 2}"
)
else:
if self.global_attn_every_n_layers != -1:
raise ValueError("global_attn_every_n_layers must be -1 when sliding_window is disabled")
if self.local_attn_rotary_emb_base != -1:
raise ValueError("local_attn_rotary_emb_base must be -1 when sliding_window is disabled")
if self.local_attn_rotary_emb_dim is not None:
raise ValueError("local_attn_rotary_emb_dim must be None when sliding_window is disabled")
if self.unpad_embeddings and self.padding != "unpadded":
warnings.warn(
"`unpad_embeddings=True` requires `padding='unpadded'`. Automatically setting `padding='unpadded'`."
)
self.padding = "unpadded"
if self.pad_logits and not self.unpad_embeddings:
raise ValueError("`pad_logits=True` requires `unpad_embeddings=True`")
if self.unpad_embeddings and self.embedding_layer == "absolute_pos":
raise ValueError(f"{self.unpad_embeddings=} is incompatible with {self.embedding_layer=}")
PADDING = ["unpadded", "padded"]
def maybe_add_padding(config: FlexBertConfig, config_option: str) -> str:
if config.padding not in PADDING:
raise ValueError(f"Invalid padding type: {config.padding}, must be one of {PADDING}")
if not any(config_option.startswith(pad + "_") for pad in PADDING):
config_option = f"{config.padding}_{config_option}"
return config_option