File size: 2,176 Bytes
d006996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: agpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: XLMR-ENIS-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- name: Precision
type: precision
value: 0.8714268909540054
- name: Recall
type: recall
value: 0.842296759522456
- name: F1
type: f1
value: 0.8566142460684552
- name: Accuracy
type: accuracy
value: 0.9827189115812273
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLMR-ENIS-finetuned-ner
This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Precision: 0.8714
- Recall: 0.8423
- F1: 0.8566
- Accuracy: 0.9827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0561 | 1.0 | 2904 | 0.0939 | 0.8481 | 0.8205 | 0.8341 | 0.9804 |
| 0.031 | 2.0 | 5808 | 0.0917 | 0.8652 | 0.8299 | 0.8472 | 0.9819 |
| 0.0186 | 3.0 | 8712 | 0.0955 | 0.8714 | 0.8423 | 0.8566 | 0.9827 |
### Framework versions
- Transformers 4.11.1
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|