--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy base_model: vesteinn/XLMR-ENIS model-index: - name: XLMR-ENIS-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - type: precision value: 0.8714268909540054 name: Precision - type: recall value: 0.842296759522456 name: Recall - type: f1 value: 0.8566142460684552 name: F1 - type: accuracy value: 0.9827189115812273 name: Accuracy --- # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Precision: 0.8714 - Recall: 0.8423 - F1: 0.8566 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0561 | 1.0 | 2904 | 0.0939 | 0.8481 | 0.8205 | 0.8341 | 0.9804 | | 0.031 | 2.0 | 5808 | 0.0917 | 0.8652 | 0.8299 | 0.8472 | 0.9819 | | 0.0186 | 3.0 | 8712 | 0.0955 | 0.8714 | 0.8423 | 0.8566 | 0.9827 | ### Framework versions - Transformers 4.11.1 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3