osanseviero commited on
Commit
ff1417b
1 Parent(s): e3cf992

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.37 +/- 0.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29fa49aaf53cc38a15cd905f8d59b2683e983e6fd2700d8336483a01ceb9021
3
+ size 108020
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe01365e670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fe01364af60>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 100000,
45
+ "_total_timesteps": 100000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1673943220401305748,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA03Wxv8LHub+SKWS//Na4vwYVGr8ZXri/FdAwP0NKgD8csfS8uitrPtwglj6rwYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]]",
60
+ "desired_goal": "[[-1.3864082 -1.4514086 -0.8912593 ]\n [-1.4440608 -0.6018833 -1.4403716 ]\n [ 0.6906751 1.0022663 -0.02986961]\n [ 0.22965899 0.29321945 0.06628736]]",
61
+ "observation": "[[ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABwsTPh0isr1NsQ8+muSNPTkouj32uGE+jajUvWS94b3i/nU+QXsNPQ1vqr2oIoQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.14359675 -0.08697913 0.14032479]\n [ 0.06928368 0.09089703 0.22043213]\n [-0.10383711 -0.11022452 0.24023011]\n [ 0.03454137 -0.08321963 0.2580769 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMfvbfoz+L+UhpRSlIwBbJRLMowBdJRHQGznIE0SAYp1fZQoaAZoCWgPQwi9rIkFviL1v5SGlFKUaBVLMmgWR0Bs38H6dlNDdX2UKGgGaAloD0MIezL/6Js0/r+UhpRSlGgVSzJoFkdAbNX8fms/6nV9lChoBmgJaA9DCMtKk1LQLQLAlIaUUpRoFUsyaBZHQGzPlh5PdmB1fZQoaAZoCWgPQwik374OnHP7v5SGlFKUaBVLMmgWR0Bs9VuYQarFdX2UKGgGaAloD0MItKolHeWg87+UhpRSlGgVSzJoFkdAbO36+FlCkXV9lChoBmgJaA9DCF5Ih4cwngDAlIaUUpRoFUsyaBZHQGzkNwzch1V1fZQoaAZoCWgPQwiOAdnr3V/4v5SGlFKUaBVLMmgWR0Bs3c7+1jRVdX2UKGgGaAloD0MI3NYWnpdK/7+UhpRSlGgVSzJoFkdAbQNjZL7GenV9lChoBmgJaA9DCKzlzkwwnPu/lIaUUpRoFUsyaBZHQGz8A4XGff51fZQoaAZoCWgPQwjizRq8r4r6v5SGlFKUaBVLMmgWR0Bs8j3AVO9GdX2UKGgGaAloD0MIn1bRH5o5+L+UhpRSlGgVSzJoFkdAbOvXRw6ySnV9lChoBmgJaA9DCJ+USQ1tQPu/lIaUUpRoFUsyaBZHQG0SDr7fpEB1fZQoaAZoCWgPQwh0zk9xHHj4v5SGlFKUaBVLMmgWR0BtCqz7di2EdX2UKGgGaAloD0MIpwcFpWgl/b+UhpRSlGgVSzJoFkdAbQDrXUYsNHV9lChoBmgJaA9DCLE08KMa9vy/lIaUUpRoFUsyaBZHQGz6hScbzbx1fZQoaAZoCWgPQwirJoi6D8D3v5SGlFKUaBVLMmgWR0BtIMslLOAzdX2UKGgGaAloD0MI7BaBsb5B/b+UhpRSlGgVSzJoFkdAbRlp+tr9EXV9lChoBmgJaA9DCDNPrimQmfm/lIaUUpRoFUsyaBZHQG0PpVS4vvl1fZQoaAZoCWgPQwiKV1nbFI/6v5SGlFKUaBVLMmgWR0BtCT52yLQ5dX2UKGgGaAloD0MIMqt3uB2a+L+UhpRSlGgVSzJoFkdAbS/H/95yEXV9lChoBmgJaA9DCJuvko/dRf6/lIaUUpRoFUsyaBZHQG0oZx7zCk51fZQoaAZoCWgPQwh2+daH9cb3v5SGlFKUaBVLMmgWR0BtHqDPGACodX2UKGgGaAloD0MIyCb5Eb9iAMCUhpRSlGgVSzJoFkdAbRg9/SYw7HV9lChoBmgJaA9DCORLqODwgva/lIaUUpRoFUsyaBZHQG09vDxb0OF1fZQoaAZoCWgPQwhU46WbxGD5v5SGlFKUaBVLMmgWR0BtNl14gRsedX2UKGgGaAloD0MIeXk6V5SS9r+UhpRSlGgVSzJoFkdAbSycvugHvHV9lChoBmgJaA9DCH+8V61M+Py/lIaUUpRoFUsyaBZHQG0mNV7x/d91fZQoaAZoCWgPQwgAqU2c3O/6v5SGlFKUaBVLMmgWR0BtS2QyRB/rdX2UKGgGaAloD0MICW6kbJE0+b+UhpRSlGgVSzJoFkdAbUQCuEEkjXV9lChoBmgJaA9DCAvuBzwwgP6/lIaUUpRoFUsyaBZHQG06PpyIYWN1fZQoaAZoCWgPQwjxg/OpY1X1v5SGlFKUaBVLMmgWR0BtM9nqVyFPdX2UKGgGaAloD0MIQWSRJt6B+r+UhpRSlGgVSzJoFkdAbVkhOgxrSHV9lChoBmgJaA9DCLppM05DVPq/lIaUUpRoFUsyaBZHQG1Rv7el9Bt1fZQoaAZoCWgPQwivCtRi8DD4v5SGlFKUaBVLMmgWR0BtR/pyIYWMdX2UKGgGaAloD0MIoBnEB3Y8+L+UhpRSlGgVSzJoFkdAbUGUVSGahHV9lChoBmgJaA9DCMQFoFG6NPe/lIaUUpRoFUsyaBZHQG1nSgPEsJ91fZQoaAZoCWgPQwg4Sl6dY4D0v5SGlFKUaBVLMmgWR0BtX+tyPuG9dX2UKGgGaAloD0MI/3ivWpmw97+UhpRSlGgVSzJoFkdAbVY2MsH0LHV9lChoBmgJaA9DCB4YQPhQIvq/lIaUUpRoFUsyaBZHQG1P1AAyVOd1fZQoaAZoCWgPQwhMNEjBU6gDwJSGlFKUaBVLMmgWR0BtdUVtXPqtdX2UKGgGaAloD0MIBthHp678+r+UhpRSlGgVSzJoFkdAbW3kJa7mMnV9lChoBmgJaA9DCBu7RPXWgPy/lIaUUpRoFUsyaBZHQG1kH8baRIV1fZQoaAZoCWgPQwh3vTRFgNP8v5SGlFKUaBVLMmgWR0BtXbi0fHPvdX2UKGgGaAloD0MIbVZ9rrbi/L+UhpRSlGgVSzJoFkdAbYMJzkp7TnV9lChoBmgJaA9DCHLdlPJaCQDAlIaUUpRoFUsyaBZHQG17qC6H0sh1fZQoaAZoCWgPQwiwHCEDeTb5v5SGlFKUaBVLMmgWR0BtceWMS9M9dX2UKGgGaAloD0MILpJ2o4/59b+UhpRSlGgVSzJoFkdAbWt/VAiV0XV9lChoBmgJaA9DCK3B+6pcaP+/lIaUUpRoFUsyaBZHQG2RzxwyZa51fZQoaAZoCWgPQwjOb5hokAL2v5SGlFKUaBVLMmgWR0Btimyon8badX2UKGgGaAloD0MIutxgqMOK9L+UhpRSlGgVSzJoFkdAbYCmtQsPKHV9lChoBmgJaA9DCJKvBFJilwDAlIaUUpRoFUsyaBZHQG16QSSNfgJ1fZQoaAZoCWgPQwhupGyRtJv6v5SGlFKUaBVLMmgWR0BtoAWFev6kdX2UKGgGaAloD0MInG1uTE8Y+b+UhpRSlGgVSzJoFkdAbZij0th/iHV9lChoBmgJaA9DCCum0k84+/y/lIaUUpRoFUsyaBZHQG2O3XiBGx51fZQoaAZoCWgPQwgWwmosYe36v5SGlFKUaBVLMmgWR0BtiHcFhXr/dX2UKGgGaAloD0MIKsb5m1AI+b+UhpRSlGgVSzJoFkdAba4k9lmOEXV9lChoBmgJaA9DCAd96e3PxfW/lIaUUpRoFUsyaBZHQG2myBK+SKZ1fZQoaAZoCWgPQwggQlw5e+f3v5SGlFKUaBVLMmgWR0BtnQInjQzDdX2UKGgGaAloD0MIZmmn5nLD9L+UhpRSlGgVSzJoFkdAbZaaya/h2nV9lChoBmgJaA9DCIrKhjWVRfm/lIaUUpRoFUsyaBZHQG28SYw7DEZ1fZQoaAZoCWgPQwj+nIL8bOT0v5SGlFKUaBVLMmgWR0BttOfPHDJmdX2UKGgGaAloD0MI43FRLSIK/r+UhpRSlGgVSzJoFkdAbasisXBP9HV9lChoBmgJaA9DCNANTdnph/y/lIaUUpRoFUsyaBZHQG2kurp7kXF1fZQoaAZoCWgPQwgUzJiCNU73v5SGlFKUaBVLMmgWR0Btyksrd30PdX2UKGgGaAloD0MIADeLFwvD/b+UhpRSlGgVSzJoFkdAbcLr30wrUnV9lChoBmgJaA9DCIts5/up8fq/lIaUUpRoFUsyaBZHQG25MV+I/JN1fZQoaAZoCWgPQwjfGW1VEpn7v5SGlFKUaBVLMmgWR0Btss5U96kZdX2UKGgGaAloD0MIo3cq4J7n+L+UhpRSlGgVSzJoFkdAbdi25QP7N3V9lChoBmgJaA9DCMKKU62F2f+/lIaUUpRoFUsyaBZHQG3RVJlJ6IF1fZQoaAZoCWgPQwgZdELooAv1v5SGlFKUaBVLMmgWR0Btx44wRGtqdX2UKGgGaAloD0MIPSzUmuad97+UhpRSlGgVSzJoFkdAbcEmReTmn3V9lChoBmgJaA9DCErQX+gRI/6/lIaUUpRoFUsyaBZHQG3m5uQ6p5x1fZQoaAZoCWgPQwiasWg6Oxn5v5SGlFKUaBVLMmgWR0Bt34Rf4REndX2UKGgGaAloD0MILJ56pMGt9b+UhpRSlGgVSzJoFkdAbdXBF/hESnV9lChoBmgJaA9DCMXJ/Q5FAfm/lIaUUpRoFUsyaBZHQG3PYXGff411fZQoaAZoCWgPQwiJRQw7jEn6v5SGlFKUaBVLMmgWR0Bt9TUb1h9cdX2UKGgGaAloD0MIgXaHFAOk97+UhpRSlGgVSzJoFkdAbe3SkTHsC3V9lChoBmgJaA9DCJiFdk6zAPu/lIaUUpRoFUsyaBZHQG3kDMeOn2t1fZQoaAZoCWgPQwj3HcNjPysAwJSGlFKUaBVLMmgWR0Bt3aaJAMUidX2UKGgGaAloD0MIttsuNNcp+7+UhpRSlGgVSzJoFkdAbgL5t3wCsHV9lChoBmgJaA9DCNNqSNxjKf+/lIaUUpRoFUsyaBZHQG37l/x2B8R1fZQoaAZoCWgPQwigUbr0L0kAwJSGlFKUaBVLMmgWR0Bt8dOwgTysdX2UKGgGaAloD0MIysNCrWne+L+UhpRSlGgVSzJoFkdAbetr433pOnV9lChoBmgJaA9DCC2Xjc75Kfq/lIaUUpRoFUsyaBZHQG4RqQJXyRV1fZQoaAZoCWgPQwg9murJ/GP0v5SGlFKUaBVLMmgWR0BuCkZLqUu+dX2UKGgGaAloD0MIwVd06zV99L+UhpRSlGgVSzJoFkdAbgCANG3F1nV9lChoBmgJaA9DCATkS6jg8Pm/lIaUUpRoFUsyaBZHQG36GA08/2V1fZQoaAZoCWgPQwiAuoEC76T4v5SGlFKUaBVLMmgWR0BuH6ksSTQmdX2UKGgGaAloD0MIATJ07KCS97+UhpRSlGgVSzJoFkdAbhhIQvpQlHV9lChoBmgJaA9DCCpSYWwhiPi/lIaUUpRoFUsyaBZHQG4Ogiml67d1fZQoaAZoCWgPQwgjaw2l9uL8v5SGlFKUaBVLMmgWR0BuCB2wFC9idX2UKGgGaAloD0MIsD2zJEBN9b+UhpRSlGgVSzJoFkdAbi4sgdOqN3V9lChoBmgJaA9DCAJIbeLk/vi/lIaUUpRoFUsyaBZHQG4myf16E8J1fZQoaAZoCWgPQwha1v1jIXrzv5SGlFKUaBVLMmgWR0BuHQOJ+DvmdX2UKGgGaAloD0MIoQ+WsaHbAcCUhpRSlGgVSzJoFkdAbhacZLqUvHV9lChoBmgJaA9DCMKlY84ztvu/lIaUUpRoFUsyaBZHQG48J+lTFVF1fZQoaAZoCWgPQwhJ8lzfhwP4v5SGlFKUaBVLMmgWR0BuNMcOskprdX2UKGgGaAloD0MIN4yC4PFt/b+UhpRSlGgVSzJoFkdAbisBV+7UX3V9lChoBmgJaA9DCKkUOxqHOvS/lIaUUpRoFUsyaBZHQG4kms/6frd1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 5000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fbaef011febad4e21570795ef9421d00100b49e0f14786aa56334bf9f2acf39
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:190743995ae0a2de79a38357b741db87460b436ae724398d1b2b03baa74d0ab6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe01365e670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe01364af60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673943220401305748, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/FrSFPqlBv7xjAg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA03Wxv8LHub+SKWS//Na4vwYVGr8ZXri/FdAwP0NKgD8csfS8uitrPtwglj6rwYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDwWtIU+qUG/vGMCDj9EIDA8adaIu2sVlDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]\n [ 0.26113957 -0.02334674 0.5547239 ]]", "desired_goal": "[[-1.3864082 -1.4514086 -0.8912593 ]\n [-1.4440608 -0.6018833 -1.4403716 ]\n [ 0.6906751 1.0022663 -0.02986961]\n [ 0.22965899 0.29321945 0.06628736]]", "observation": "[[ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]\n [ 0.26113957 -0.02334674 0.5547239 0.01074988 -0.00417595 0.01807662]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABwsTPh0isr1NsQ8+muSNPTkouj32uGE+jajUvWS94b3i/nU+QXsNPQ1vqr2oIoQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14359675 -0.08697913 0.14032479]\n [ 0.06928368 0.09089703 0.22043213]\n [-0.10383711 -0.11022452 0.24023011]\n [ 0.03454137 -0.08321963 0.2580769 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpMfvbfoz+L+UhpRSlIwBbJRLMowBdJRHQGznIE0SAYp1fZQoaAZoCWgPQwi9rIkFviL1v5SGlFKUaBVLMmgWR0Bs38H6dlNDdX2UKGgGaAloD0MIezL/6Js0/r+UhpRSlGgVSzJoFkdAbNX8fms/6nV9lChoBmgJaA9DCMtKk1LQLQLAlIaUUpRoFUsyaBZHQGzPlh5PdmB1fZQoaAZoCWgPQwik374OnHP7v5SGlFKUaBVLMmgWR0Bs9VuYQarFdX2UKGgGaAloD0MItKolHeWg87+UhpRSlGgVSzJoFkdAbO36+FlCkXV9lChoBmgJaA9DCF5Ih4cwngDAlIaUUpRoFUsyaBZHQGzkNwzch1V1fZQoaAZoCWgPQwiOAdnr3V/4v5SGlFKUaBVLMmgWR0Bs3c7+1jRVdX2UKGgGaAloD0MI3NYWnpdK/7+UhpRSlGgVSzJoFkdAbQNjZL7GenV9lChoBmgJaA9DCKzlzkwwnPu/lIaUUpRoFUsyaBZHQGz8A4XGff51fZQoaAZoCWgPQwjizRq8r4r6v5SGlFKUaBVLMmgWR0Bs8j3AVO9GdX2UKGgGaAloD0MIn1bRH5o5+L+UhpRSlGgVSzJoFkdAbOvXRw6ySnV9lChoBmgJaA9DCJ+USQ1tQPu/lIaUUpRoFUsyaBZHQG0SDr7fpEB1fZQoaAZoCWgPQwh0zk9xHHj4v5SGlFKUaBVLMmgWR0BtCqz7di2EdX2UKGgGaAloD0MIpwcFpWgl/b+UhpRSlGgVSzJoFkdAbQDrXUYsNHV9lChoBmgJaA9DCLE08KMa9vy/lIaUUpRoFUsyaBZHQGz6hScbzbx1fZQoaAZoCWgPQwirJoi6D8D3v5SGlFKUaBVLMmgWR0BtIMslLOAzdX2UKGgGaAloD0MI7BaBsb5B/b+UhpRSlGgVSzJoFkdAbRlp+tr9EXV9lChoBmgJaA9DCDNPrimQmfm/lIaUUpRoFUsyaBZHQG0PpVS4vvl1fZQoaAZoCWgPQwiKV1nbFI/6v5SGlFKUaBVLMmgWR0BtCT52yLQ5dX2UKGgGaAloD0MIMqt3uB2a+L+UhpRSlGgVSzJoFkdAbS/H/95yEXV9lChoBmgJaA9DCJuvko/dRf6/lIaUUpRoFUsyaBZHQG0oZx7zCk51fZQoaAZoCWgPQwh2+daH9cb3v5SGlFKUaBVLMmgWR0BtHqDPGACodX2UKGgGaAloD0MIyCb5Eb9iAMCUhpRSlGgVSzJoFkdAbRg9/SYw7HV9lChoBmgJaA9DCORLqODwgva/lIaUUpRoFUsyaBZHQG09vDxb0OF1fZQoaAZoCWgPQwhU46WbxGD5v5SGlFKUaBVLMmgWR0BtNl14gRsedX2UKGgGaAloD0MIeXk6V5SS9r+UhpRSlGgVSzJoFkdAbSycvugHvHV9lChoBmgJaA9DCH+8V61M+Py/lIaUUpRoFUsyaBZHQG0mNV7x/d91fZQoaAZoCWgPQwgAqU2c3O/6v5SGlFKUaBVLMmgWR0BtS2QyRB/rdX2UKGgGaAloD0MICW6kbJE0+b+UhpRSlGgVSzJoFkdAbUQCuEEkjXV9lChoBmgJaA9DCAvuBzwwgP6/lIaUUpRoFUsyaBZHQG06PpyIYWN1fZQoaAZoCWgPQwjxg/OpY1X1v5SGlFKUaBVLMmgWR0BtM9nqVyFPdX2UKGgGaAloD0MIQWSRJt6B+r+UhpRSlGgVSzJoFkdAbVkhOgxrSHV9lChoBmgJaA9DCLppM05DVPq/lIaUUpRoFUsyaBZHQG1Rv7el9Bt1fZQoaAZoCWgPQwivCtRi8DD4v5SGlFKUaBVLMmgWR0BtR/pyIYWMdX2UKGgGaAloD0MIoBnEB3Y8+L+UhpRSlGgVSzJoFkdAbUGUVSGahHV9lChoBmgJaA9DCMQFoFG6NPe/lIaUUpRoFUsyaBZHQG1nSgPEsJ91fZQoaAZoCWgPQwg4Sl6dY4D0v5SGlFKUaBVLMmgWR0BtX+tyPuG9dX2UKGgGaAloD0MI/3ivWpmw97+UhpRSlGgVSzJoFkdAbVY2MsH0LHV9lChoBmgJaA9DCB4YQPhQIvq/lIaUUpRoFUsyaBZHQG1P1AAyVOd1fZQoaAZoCWgPQwhMNEjBU6gDwJSGlFKUaBVLMmgWR0BtdUVtXPqtdX2UKGgGaAloD0MIBthHp678+r+UhpRSlGgVSzJoFkdAbW3kJa7mMnV9lChoBmgJaA9DCBu7RPXWgPy/lIaUUpRoFUsyaBZHQG1kH8baRIV1fZQoaAZoCWgPQwh3vTRFgNP8v5SGlFKUaBVLMmgWR0BtXbi0fHPvdX2UKGgGaAloD0MIbVZ9rrbi/L+UhpRSlGgVSzJoFkdAbYMJzkp7TnV9lChoBmgJaA9DCHLdlPJaCQDAlIaUUpRoFUsyaBZHQG17qC6H0sh1fZQoaAZoCWgPQwiwHCEDeTb5v5SGlFKUaBVLMmgWR0BtceWMS9M9dX2UKGgGaAloD0MILpJ2o4/59b+UhpRSlGgVSzJoFkdAbWt/VAiV0XV9lChoBmgJaA9DCK3B+6pcaP+/lIaUUpRoFUsyaBZHQG2RzxwyZa51fZQoaAZoCWgPQwjOb5hokAL2v5SGlFKUaBVLMmgWR0Btimyon8badX2UKGgGaAloD0MIutxgqMOK9L+UhpRSlGgVSzJoFkdAbYCmtQsPKHV9lChoBmgJaA9DCJKvBFJilwDAlIaUUpRoFUsyaBZHQG16QSSNfgJ1fZQoaAZoCWgPQwhupGyRtJv6v5SGlFKUaBVLMmgWR0BtoAWFev6kdX2UKGgGaAloD0MInG1uTE8Y+b+UhpRSlGgVSzJoFkdAbZij0th/iHV9lChoBmgJaA9DCCum0k84+/y/lIaUUpRoFUsyaBZHQG2O3XiBGx51fZQoaAZoCWgPQwgWwmosYe36v5SGlFKUaBVLMmgWR0BtiHcFhXr/dX2UKGgGaAloD0MIKsb5m1AI+b+UhpRSlGgVSzJoFkdAba4k9lmOEXV9lChoBmgJaA9DCAd96e3PxfW/lIaUUpRoFUsyaBZHQG2myBK+SKZ1fZQoaAZoCWgPQwggQlw5e+f3v5SGlFKUaBVLMmgWR0BtnQInjQzDdX2UKGgGaAloD0MIZmmn5nLD9L+UhpRSlGgVSzJoFkdAbZaaya/h2nV9lChoBmgJaA9DCIrKhjWVRfm/lIaUUpRoFUsyaBZHQG28SYw7DEZ1fZQoaAZoCWgPQwj+nIL8bOT0v5SGlFKUaBVLMmgWR0BttOfPHDJmdX2UKGgGaAloD0MI43FRLSIK/r+UhpRSlGgVSzJoFkdAbasisXBP9HV9lChoBmgJaA9DCNANTdnph/y/lIaUUpRoFUsyaBZHQG2kurp7kXF1fZQoaAZoCWgPQwgUzJiCNU73v5SGlFKUaBVLMmgWR0Btyksrd30PdX2UKGgGaAloD0MIADeLFwvD/b+UhpRSlGgVSzJoFkdAbcLr30wrUnV9lChoBmgJaA9DCIts5/up8fq/lIaUUpRoFUsyaBZHQG25MV+I/JN1fZQoaAZoCWgPQwjfGW1VEpn7v5SGlFKUaBVLMmgWR0Btss5U96kZdX2UKGgGaAloD0MIo3cq4J7n+L+UhpRSlGgVSzJoFkdAbdi25QP7N3V9lChoBmgJaA9DCMKKU62F2f+/lIaUUpRoFUsyaBZHQG3RVJlJ6IF1fZQoaAZoCWgPQwgZdELooAv1v5SGlFKUaBVLMmgWR0Btx44wRGtqdX2UKGgGaAloD0MIPSzUmuad97+UhpRSlGgVSzJoFkdAbcEmReTmn3V9lChoBmgJaA9DCErQX+gRI/6/lIaUUpRoFUsyaBZHQG3m5uQ6p5x1fZQoaAZoCWgPQwiasWg6Oxn5v5SGlFKUaBVLMmgWR0Bt34Rf4REndX2UKGgGaAloD0MILJ56pMGt9b+UhpRSlGgVSzJoFkdAbdXBF/hESnV9lChoBmgJaA9DCMXJ/Q5FAfm/lIaUUpRoFUsyaBZHQG3PYXGff411fZQoaAZoCWgPQwiJRQw7jEn6v5SGlFKUaBVLMmgWR0Bt9TUb1h9cdX2UKGgGaAloD0MIgXaHFAOk97+UhpRSlGgVSzJoFkdAbe3SkTHsC3V9lChoBmgJaA9DCJiFdk6zAPu/lIaUUpRoFUsyaBZHQG3kDMeOn2t1fZQoaAZoCWgPQwj3HcNjPysAwJSGlFKUaBVLMmgWR0Bt3aaJAMUidX2UKGgGaAloD0MIttsuNNcp+7+UhpRSlGgVSzJoFkdAbgL5t3wCsHV9lChoBmgJaA9DCNNqSNxjKf+/lIaUUpRoFUsyaBZHQG37l/x2B8R1fZQoaAZoCWgPQwigUbr0L0kAwJSGlFKUaBVLMmgWR0Bt8dOwgTysdX2UKGgGaAloD0MIysNCrWne+L+UhpRSlGgVSzJoFkdAbetr433pOnV9lChoBmgJaA9DCC2Xjc75Kfq/lIaUUpRoFUsyaBZHQG4RqQJXyRV1fZQoaAZoCWgPQwg9murJ/GP0v5SGlFKUaBVLMmgWR0BuCkZLqUu+dX2UKGgGaAloD0MIwVd06zV99L+UhpRSlGgVSzJoFkdAbgCANG3F1nV9lChoBmgJaA9DCATkS6jg8Pm/lIaUUpRoFUsyaBZHQG36GA08/2V1fZQoaAZoCWgPQwiAuoEC76T4v5SGlFKUaBVLMmgWR0BuH6ksSTQmdX2UKGgGaAloD0MIATJ07KCS97+UhpRSlGgVSzJoFkdAbhhIQvpQlHV9lChoBmgJaA9DCCpSYWwhiPi/lIaUUpRoFUsyaBZHQG4Ogiml67d1fZQoaAZoCWgPQwgjaw2l9uL8v5SGlFKUaBVLMmgWR0BuCB2wFC9idX2UKGgGaAloD0MIsD2zJEBN9b+UhpRSlGgVSzJoFkdAbi4sgdOqN3V9lChoBmgJaA9DCAJIbeLk/vi/lIaUUpRoFUsyaBZHQG4myf16E8J1fZQoaAZoCWgPQwha1v1jIXrzv5SGlFKUaBVLMmgWR0BuHQOJ+DvmdX2UKGgGaAloD0MIoQ+WsaHbAcCUhpRSlGgVSzJoFkdAbhacZLqUvHV9lChoBmgJaA9DCMKlY84ztvu/lIaUUpRoFUsyaBZHQG48J+lTFVF1fZQoaAZoCWgPQwhJ8lzfhwP4v5SGlFKUaBVLMmgWR0BuNMcOskprdX2UKGgGaAloD0MIN4yC4PFt/b+UhpRSlGgVSzJoFkdAbisBV+7UX3V9lChoBmgJaA9DCKkUOxqHOvS/lIaUUpRoFUsyaBZHQG4kms/6frd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (784 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.3730515531031415, "std_reward": 0.15450308364327675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T08:17:45.089497"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1908c10bccb6ca8f11b89d63ce80660b56c42ad982554560405a11423193eb39
3
+ size 3212