oscarb92 commited on
Commit
d8c3a27
1 Parent(s): 98b4fc0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -7.16 +/- 1.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6c8c198f46fbe57a0f84374e5b2d6fe89f708197158b11c4c7c4ea25d5f510a
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7596dc7280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f7596dc43c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676151247556692527,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALdqCPqebcL28+Ek/LdqCPqebcL28+Ek/LdqCPqebcL28+Ek/LdqCPqebcL28+Ek/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb6P8vnw4zz5HBWk/gm3GvgSSV7+rpDW/OUPxvVPGy76SJce//z3PP/x+a78rlLo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAt2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]]",
60
+ "desired_goal": "[[-0.4934344 0.40472782 0.9102368 ]\n [-0.38755423 -0.8420718 -0.7095439 ]\n [-0.117804 -0.39799747 -1.555834 ]\n [ 1.6190795 -0.9199064 1.4576467 ]]",
61
+ "observation": "[[ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFS73ug4Cij1KnBc9e5S3vUyxDT46n04+ntTPvUtlr727mVA+/fjzvAkCsL1OUBs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00188583 0.06738673 0.03701428]\n [-0.08963867 0.13837165 0.20177928]\n [-0.10147975 -0.08564242 0.20371144]\n [-0.02978181 -0.08594138 0.15167353]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImPp5U5FCIMCUhpRSlIwBbJRLMowBdJRHQKgl2dtl7MR1fZQoaAZoCWgPQwiHM7+aA1QYwJSGlFKUaBVLMmgWR0CoJZM0HhS+dX2UKGgGaAloD0MIQ3Bcxk0dGMCUhpRSlGgVSzJoFkdAqCVSrT6SDHV9lChoBmgJaA9DCFor2hznNiPAlIaUUpRoFUsyaBZHQKglEX7cfvF1fZQoaAZoCWgPQwglea7vw3EXwJSGlFKUaBVLMmgWR0CoJtzdUKiPdX2UKGgGaAloD0MIQE8DBkn/DsCUhpRSlGgVSzJoFkdAqCaWU6gdwXV9lChoBmgJaA9DCFddh2pKEhjAlIaUUpRoFUsyaBZHQKgmVeDWbw11fZQoaAZoCWgPQwiARunSvwQWwJSGlFKUaBVLMmgWR0CoJhS+Yc//dX2UKGgGaAloD0MIkq6ZfLPtGsCUhpRSlGgVSzJoFkdAqCfPZVXFLnV9lChoBmgJaA9DCFn4+lqX+h7AlIaUUpRoFUsyaBZHQKgniN6PbPB1fZQoaAZoCWgPQwhjuaXVkJgawJSGlFKUaBVLMmgWR0CoJ0hun/DMdX2UKGgGaAloD0MIqg8k7xyaJcCUhpRSlGgVSzJoFkdAqCcHbM5fdHV9lChoBmgJaA9DCMNi1LX27hTAlIaUUpRoFUsyaBZHQKgozxI8QqZ1fZQoaAZoCWgPQwj4+lqXGrEdwJSGlFKUaBVLMmgWR0CoKIi5NGmUdX2UKGgGaAloD0MIBb8NMV7jG8CUhpRSlGgVSzJoFkdAqChIREnb7HV9lChoBmgJaA9DCO1jBb8NYR3AlIaUUpRoFUsyaBZHQKgoB2fTTfB1fZQoaAZoCWgPQwh5ILJIEy8RwJSGlFKUaBVLMmgWR0CoKcORs/IKdX2UKGgGaAloD0MICCEgX0JtIcCUhpRSlGgVSzJoFkdAqCl9BIFvAHV9lChoBmgJaA9DCP/r3LQZxxfAlIaUUpRoFUsyaBZHQKgpPLqUu+R1fZQoaAZoCWgPQwjCTUaVYZwbwJSGlFKUaBVLMmgWR0CoKPv73wkPdX2UKGgGaAloD0MIseB+wAODHMCUhpRSlGgVSzJoFkdAqCshhvze43V9lChoBmgJaA9DCFpo5zQLVBnAlIaUUpRoFUsyaBZHQKgq24/eLvV1fZQoaAZoCWgPQwgS91j60AUdwJSGlFKUaBVLMmgWR0CoKpvXsgMddX2UKGgGaAloD0MIPZl/9E0aGsCUhpRSlGgVSzJoFkdAqCpbhHbypnV9lChoBmgJaA9DCJVFYRdFjxPAlIaUUpRoFUsyaBZHQKgssQ6IWP91fZQoaAZoCWgPQwgGDmjpCh4gwJSGlFKUaBVLMmgWR0CoLGscZLqVdX2UKGgGaAloD0MI+IiYEklkF8CUhpRSlGgVSzJoFkdAqCwrOX3QD3V9lChoBmgJaA9DCOp3YWu28iPAlIaUUpRoFUsyaBZHQKgr6sKb8WN1fZQoaAZoCWgPQwio4VtYN/4RwJSGlFKUaBVLMmgWR0CoLkYODrZ8dX2UKGgGaAloD0MIjgOvljvjHMCUhpRSlGgVSzJoFkdAqC4AUBXCCXV9lChoBmgJaA9DCPBrJAnCfSLAlIaUUpRoFUsyaBZHQKgtwI4VARl1fZQoaAZoCWgPQwgdyHpq9fUXwJSGlFKUaBVLMmgWR0CoLYB1LamGdX2UKGgGaAloD0MI/vM0YJCEGsCUhpRSlGgVSzJoFkdAqC/tGoaUA3V9lChoBmgJaA9DCCxF8pVAuh7AlIaUUpRoFUsyaBZHQKgvp9tuUEB1fZQoaAZoCWgPQwhMHHkgsjgYwJSGlFKUaBVLMmgWR0CoL2gQpWmxdX2UKGgGaAloD0MIPfGcLSDUIcCUhpRSlGgVSzJoFkdAqC8nnfVI7XV9lChoBmgJaA9DCEBNLVvruyLAlIaUUpRoFUsyaBZHQKgxpfhMrVh1fZQoaAZoCWgPQwhkA+li06oSwJSGlFKUaBVLMmgWR0CoMWC1JDmbdX2UKGgGaAloD0MILESHwJEgE8CUhpRSlGgVSzJoFkdAqDEhkCmuT3V9lChoBmgJaA9DCOBkG7gD1RnAlIaUUpRoFUsyaBZHQKgw4UoKD011fZQoaAZoCWgPQwjpnnWNlqMawJSGlFKUaBVLMmgWR0CoM1lUQ04zdX2UKGgGaAloD0MIEyo4vCAyI8CUhpRSlGgVSzJoFkdAqDMTopx3mnV9lChoBmgJaA9DCKmDvB5MwiPAlIaUUpRoFUsyaBZHQKgy0/1xsEd1fZQoaAZoCWgPQwieCOI8nKATwJSGlFKUaBVLMmgWR0CoMpOX3QD3dX2UKGgGaAloD0MIcO6vHvd9GsCUhpRSlGgVSzJoFkdAqDUQz7/GVHV9lChoBmgJaA9DCNE+VvDbYB7AlIaUUpRoFUsyaBZHQKg0yxtYSxt1fZQoaAZoCWgPQwjcfvlkxXAfwJSGlFKUaBVLMmgWR0CoNItpudf+dX2UKGgGaAloD0MIi1HX2vtkFsCUhpRSlGgVSzJoFkdAqDRLBsQ/YHV9lChoBmgJaA9DCOC593DJoR7AlIaUUpRoFUsyaBZHQKg2aOq//Nt1fZQoaAZoCWgPQwg2donqrZEawJSGlFKUaBVLMmgWR0CoNiLELpiadX2UKGgGaAloD0MINC+H3XcMHsCUhpRSlGgVSzJoFkdAqDXi3G4qgHV9lChoBmgJaA9DCDcZVYZxZxHAlIaUUpRoFUsyaBZHQKg1ohpQDV91fZQoaAZoCWgPQwgZr3lVZ3UTwJSGlFKUaBVLMmgWR0CoN2USqU/wdX2UKGgGaAloD0MItFpgj4nkGMCUhpRSlGgVSzJoFkdAqDceetjkMnV9lChoBmgJaA9DCCAL0SFwlBzAlIaUUpRoFUsyaBZHQKg23fUF0Pp1fZQoaAZoCWgPQwjPTZtxGkIbwJSGlFKUaBVLMmgWR0CoNpzMibDudX2UKGgGaAloD0MIjuiedY02G8CUhpRSlGgVSzJoFkdAqDhVy1eBx3V9lChoBmgJaA9DCD8e+u5Whh7AlIaUUpRoFUsyaBZHQKg4D0mMOwx1fZQoaAZoCWgPQwhbzTrj+4IUwJSGlFKUaBVLMmgWR0CoN87+T/yYdX2UKGgGaAloD0MI54u9F1+MIMCUhpRSlGgVSzJoFkdAqDeOJemelXV9lChoBmgJaA9DCFAcQL/vPxzAlIaUUpRoFUsyaBZHQKg5WxREWqN1fZQoaAZoCWgPQwhszVZe8q8SwJSGlFKUaBVLMmgWR0CoORSt/4IsdX2UKGgGaAloD0MIQNzVq8j4E8CUhpRSlGgVSzJoFkdAqDjUNx2jf3V9lChoBmgJaA9DCCiBzTl41hrAlIaUUpRoFUsyaBZHQKg4kz/IbOx1fZQoaAZoCWgPQwhjmuleJ2UdwJSGlFKUaBVLMmgWR0CoOlNbLU1AdX2UKGgGaAloD0MIHqUSntDjJcCUhpRSlGgVSzJoFkdAqDoMwevIO3V9lChoBmgJaA9DCISaIVUUnx7AlIaUUpRoFUsyaBZHQKg5zFVDKHR1fZQoaAZoCWgPQwhJZB9kWcAQwJSGlFKUaBVLMmgWR0CoOYsqaw2VdX2UKGgGaAloD0MIFM/ZAkLrDsCUhpRSlGgVSzJoFkdAqDtkniNsFnV9lChoBmgJaA9DCNdMvtnmlhnAlIaUUpRoFUsyaBZHQKg7HipeeFt1fZQoaAZoCWgPQwgdyeU/pIcgwJSGlFKUaBVLMmgWR0CoOt3AuZkTdX2UKGgGaAloD0MI+N9Kdmx0HsCUhpRSlGgVSzJoFkdAqDqdBKL88HV9lChoBmgJaA9DCEBrfvylHSPAlIaUUpRoFUsyaBZHQKg8cKyfL9x1fZQoaAZoCWgPQwgKZeHra90kwJSGlFKUaBVLMmgWR0CoPCo065oXdX2UKGgGaAloD0MIKQge397lHcCUhpRSlGgVSzJoFkdAqDvp1LamGnV9lChoBmgJaA9DCLqBAu/kEw3AlIaUUpRoFUsyaBZHQKg7qMWoFV11fZQoaAZoCWgPQwjsoBLXMR4gwJSGlFKUaBVLMmgWR0CoPXUHpr1vdX2UKGgGaAloD0MIy4XKv5YHGcCUhpRSlGgVSzJoFkdAqD0ufNA1N3V9lChoBmgJaA9DCGvY74l1KhTAlIaUUpRoFUsyaBZHQKg87j+aScN1fZQoaAZoCWgPQwiaWyGsxjIQwJSGlFKUaBVLMmgWR0CoPK0zbeuWdX2UKGgGaAloD0MIghspWyQNF8CUhpRSlGgVSzJoFkdAqD5qOgg5inV9lChoBmgJaA9DCB9N9WT+YSHAlIaUUpRoFUsyaBZHQKg+I/oq0+l1fZQoaAZoCWgPQwh/TkF+NsIdwJSGlFKUaBVLMmgWR0CoPeN+b3GodX2UKGgGaAloD0MIEXFzKhmAGcCUhpRSlGgVSzJoFkdAqD2icd5prXV9lChoBmgJaA9DCCwq4nSSTSDAlIaUUpRoFUsyaBZHQKg/Y+Sr5qN1fZQoaAZoCWgPQwjL+PcZF34XwJSGlFKUaBVLMmgWR0CoPx1XeWOZdX2UKGgGaAloD0MIZRpNLsZAE8CUhpRSlGgVSzJoFkdAqD7dBUrCnHV9lChoBmgJaA9DCAJlU67wHhnAlIaUUpRoFUsyaBZHQKg+nEsJ6Y51fZQoaAZoCWgPQwilMsUcBI0gwJSGlFKUaBVLMmgWR0CoQGPoNd7fdX2UKGgGaAloD0MIWDz1SIO7IcCUhpRSlGgVSzJoFkdAqEAdkJ8fFXV9lChoBmgJaA9DCDdTIR6JzyHAlIaUUpRoFUsyaBZHQKg/3S4vvjR1fZQoaAZoCWgPQwgWTz3S4NYiwJSGlFKUaBVLMmgWR0CoP5wGnn+ydX2UKGgGaAloD0MIaxDmdi/XGMCUhpRSlGgVSzJoFkdAqEFf1nM+vHV9lChoBmgJaA9DCJlH/mDgESLAlIaUUpRoFUsyaBZHQKhBGU/OdG11fZQoaAZoCWgPQwgAyXTo9EwiwJSGlFKUaBVLMmgWR0CoQNjhcZ+AdX2UKGgGaAloD0MIf9+/eXFqIsCUhpRSlGgVSzJoFkdAqECX6XSjQHV9lChoBmgJaA9DCCBhGLDkehPAlIaUUpRoFUsyaBZHQKhCVX2dupF1fZQoaAZoCWgPQwjgDtQpj14iwJSGlFKUaBVLMmgWR0CoQg7vw3HadX2UKGgGaAloD0MI7ISX4NRHF8CUhpRSlGgVSzJoFkdAqEHOh0yP/HV9lChoBmgJaA9DCL5r0Jfe3hjAlIaUUpRoFUsyaBZHQKhBjYBeXzF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16615a1436061a665ea0b0b546441a5716827480f8f244c868aa3c617f9c2995
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa04f80e0730179016b6e71d9b6e546711aa0e8c74def9900457fdbaffad689
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7596dc7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7596dc43c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676151247556692527, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALdqCPqebcL28+Ek/LdqCPqebcL28+Ek/LdqCPqebcL28+Ek/LdqCPqebcL28+Ek/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb6P8vnw4zz5HBWk/gm3GvgSSV7+rpDW/OUPxvVPGy76SJce//z3PP/x+a78rlLo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAt2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD0t2oI+p5twvbz4ST/6A4U949EKvFugSD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]\n [ 0.2555708 -0.05874219 0.78895164]]", "desired_goal": "[[-0.4934344 0.40472782 0.9102368 ]\n [-0.38755423 -0.8420718 -0.7095439 ]\n [-0.117804 -0.39799747 -1.555834 ]\n [ 1.6190795 -0.9199064 1.4576467 ]]", "observation": "[[ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]\n [ 0.2555708 -0.05874219 0.78895164 0.06494899 -0.00847289 0.04898105]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFS73ug4Cij1KnBc9e5S3vUyxDT46n04+ntTPvUtlr727mVA+/fjzvAkCsL1OUBs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00188583 0.06738673 0.03701428]\n [-0.08963867 0.13837165 0.20177928]\n [-0.10147975 -0.08564242 0.20371144]\n [-0.02978181 -0.08594138 0.15167353]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImPp5U5FCIMCUhpRSlIwBbJRLMowBdJRHQKgl2dtl7MR1fZQoaAZoCWgPQwiHM7+aA1QYwJSGlFKUaBVLMmgWR0CoJZM0HhS+dX2UKGgGaAloD0MIQ3Bcxk0dGMCUhpRSlGgVSzJoFkdAqCVSrT6SDHV9lChoBmgJaA9DCFor2hznNiPAlIaUUpRoFUsyaBZHQKglEX7cfvF1fZQoaAZoCWgPQwglea7vw3EXwJSGlFKUaBVLMmgWR0CoJtzdUKiPdX2UKGgGaAloD0MIQE8DBkn/DsCUhpRSlGgVSzJoFkdAqCaWU6gdwXV9lChoBmgJaA9DCFddh2pKEhjAlIaUUpRoFUsyaBZHQKgmVeDWbw11fZQoaAZoCWgPQwiARunSvwQWwJSGlFKUaBVLMmgWR0CoJhS+Yc//dX2UKGgGaAloD0MIkq6ZfLPtGsCUhpRSlGgVSzJoFkdAqCfPZVXFLnV9lChoBmgJaA9DCFn4+lqX+h7AlIaUUpRoFUsyaBZHQKgniN6PbPB1fZQoaAZoCWgPQwhjuaXVkJgawJSGlFKUaBVLMmgWR0CoJ0hun/DMdX2UKGgGaAloD0MIqg8k7xyaJcCUhpRSlGgVSzJoFkdAqCcHbM5fdHV9lChoBmgJaA9DCMNi1LX27hTAlIaUUpRoFUsyaBZHQKgozxI8QqZ1fZQoaAZoCWgPQwj4+lqXGrEdwJSGlFKUaBVLMmgWR0CoKIi5NGmUdX2UKGgGaAloD0MIBb8NMV7jG8CUhpRSlGgVSzJoFkdAqChIREnb7HV9lChoBmgJaA9DCO1jBb8NYR3AlIaUUpRoFUsyaBZHQKgoB2fTTfB1fZQoaAZoCWgPQwh5ILJIEy8RwJSGlFKUaBVLMmgWR0CoKcORs/IKdX2UKGgGaAloD0MICCEgX0JtIcCUhpRSlGgVSzJoFkdAqCl9BIFvAHV9lChoBmgJaA9DCP/r3LQZxxfAlIaUUpRoFUsyaBZHQKgpPLqUu+R1fZQoaAZoCWgPQwjCTUaVYZwbwJSGlFKUaBVLMmgWR0CoKPv73wkPdX2UKGgGaAloD0MIseB+wAODHMCUhpRSlGgVSzJoFkdAqCshhvze43V9lChoBmgJaA9DCFpo5zQLVBnAlIaUUpRoFUsyaBZHQKgq24/eLvV1fZQoaAZoCWgPQwgS91j60AUdwJSGlFKUaBVLMmgWR0CoKpvXsgMddX2UKGgGaAloD0MIPZl/9E0aGsCUhpRSlGgVSzJoFkdAqCpbhHbypnV9lChoBmgJaA9DCJVFYRdFjxPAlIaUUpRoFUsyaBZHQKgssQ6IWP91fZQoaAZoCWgPQwgGDmjpCh4gwJSGlFKUaBVLMmgWR0CoLGscZLqVdX2UKGgGaAloD0MI+IiYEklkF8CUhpRSlGgVSzJoFkdAqCwrOX3QD3V9lChoBmgJaA9DCOp3YWu28iPAlIaUUpRoFUsyaBZHQKgr6sKb8WN1fZQoaAZoCWgPQwio4VtYN/4RwJSGlFKUaBVLMmgWR0CoLkYODrZ8dX2UKGgGaAloD0MIjgOvljvjHMCUhpRSlGgVSzJoFkdAqC4AUBXCCXV9lChoBmgJaA9DCPBrJAnCfSLAlIaUUpRoFUsyaBZHQKgtwI4VARl1fZQoaAZoCWgPQwgdyHpq9fUXwJSGlFKUaBVLMmgWR0CoLYB1LamGdX2UKGgGaAloD0MI/vM0YJCEGsCUhpRSlGgVSzJoFkdAqC/tGoaUA3V9lChoBmgJaA9DCCxF8pVAuh7AlIaUUpRoFUsyaBZHQKgvp9tuUEB1fZQoaAZoCWgPQwhMHHkgsjgYwJSGlFKUaBVLMmgWR0CoL2gQpWmxdX2UKGgGaAloD0MIPfGcLSDUIcCUhpRSlGgVSzJoFkdAqC8nnfVI7XV9lChoBmgJaA9DCEBNLVvruyLAlIaUUpRoFUsyaBZHQKgxpfhMrVh1fZQoaAZoCWgPQwhkA+li06oSwJSGlFKUaBVLMmgWR0CoMWC1JDmbdX2UKGgGaAloD0MILESHwJEgE8CUhpRSlGgVSzJoFkdAqDEhkCmuT3V9lChoBmgJaA9DCOBkG7gD1RnAlIaUUpRoFUsyaBZHQKgw4UoKD011fZQoaAZoCWgPQwjpnnWNlqMawJSGlFKUaBVLMmgWR0CoM1lUQ04zdX2UKGgGaAloD0MIEyo4vCAyI8CUhpRSlGgVSzJoFkdAqDMTopx3mnV9lChoBmgJaA9DCKmDvB5MwiPAlIaUUpRoFUsyaBZHQKgy0/1xsEd1fZQoaAZoCWgPQwieCOI8nKATwJSGlFKUaBVLMmgWR0CoMpOX3QD3dX2UKGgGaAloD0MIcO6vHvd9GsCUhpRSlGgVSzJoFkdAqDUQz7/GVHV9lChoBmgJaA9DCNE+VvDbYB7AlIaUUpRoFUsyaBZHQKg0yxtYSxt1fZQoaAZoCWgPQwjcfvlkxXAfwJSGlFKUaBVLMmgWR0CoNItpudf+dX2UKGgGaAloD0MIi1HX2vtkFsCUhpRSlGgVSzJoFkdAqDRLBsQ/YHV9lChoBmgJaA9DCOC593DJoR7AlIaUUpRoFUsyaBZHQKg2aOq//Nt1fZQoaAZoCWgPQwg2donqrZEawJSGlFKUaBVLMmgWR0CoNiLELpiadX2UKGgGaAloD0MINC+H3XcMHsCUhpRSlGgVSzJoFkdAqDXi3G4qgHV9lChoBmgJaA9DCDcZVYZxZxHAlIaUUpRoFUsyaBZHQKg1ohpQDV91fZQoaAZoCWgPQwgZr3lVZ3UTwJSGlFKUaBVLMmgWR0CoN2USqU/wdX2UKGgGaAloD0MItFpgj4nkGMCUhpRSlGgVSzJoFkdAqDceetjkMnV9lChoBmgJaA9DCCAL0SFwlBzAlIaUUpRoFUsyaBZHQKg23fUF0Pp1fZQoaAZoCWgPQwjPTZtxGkIbwJSGlFKUaBVLMmgWR0CoNpzMibDudX2UKGgGaAloD0MIjuiedY02G8CUhpRSlGgVSzJoFkdAqDhVy1eBx3V9lChoBmgJaA9DCD8e+u5Whh7AlIaUUpRoFUsyaBZHQKg4D0mMOwx1fZQoaAZoCWgPQwhbzTrj+4IUwJSGlFKUaBVLMmgWR0CoN87+T/yYdX2UKGgGaAloD0MI54u9F1+MIMCUhpRSlGgVSzJoFkdAqDeOJemelXV9lChoBmgJaA9DCFAcQL/vPxzAlIaUUpRoFUsyaBZHQKg5WxREWqN1fZQoaAZoCWgPQwhszVZe8q8SwJSGlFKUaBVLMmgWR0CoORSt/4IsdX2UKGgGaAloD0MIQNzVq8j4E8CUhpRSlGgVSzJoFkdAqDjUNx2jf3V9lChoBmgJaA9DCCiBzTl41hrAlIaUUpRoFUsyaBZHQKg4kz/IbOx1fZQoaAZoCWgPQwhjmuleJ2UdwJSGlFKUaBVLMmgWR0CoOlNbLU1AdX2UKGgGaAloD0MIHqUSntDjJcCUhpRSlGgVSzJoFkdAqDoMwevIO3V9lChoBmgJaA9DCISaIVUUnx7AlIaUUpRoFUsyaBZHQKg5zFVDKHR1fZQoaAZoCWgPQwhJZB9kWcAQwJSGlFKUaBVLMmgWR0CoOYsqaw2VdX2UKGgGaAloD0MIFM/ZAkLrDsCUhpRSlGgVSzJoFkdAqDtkniNsFnV9lChoBmgJaA9DCNdMvtnmlhnAlIaUUpRoFUsyaBZHQKg7HipeeFt1fZQoaAZoCWgPQwgdyeU/pIcgwJSGlFKUaBVLMmgWR0CoOt3AuZkTdX2UKGgGaAloD0MI+N9Kdmx0HsCUhpRSlGgVSzJoFkdAqDqdBKL88HV9lChoBmgJaA9DCEBrfvylHSPAlIaUUpRoFUsyaBZHQKg8cKyfL9x1fZQoaAZoCWgPQwgKZeHra90kwJSGlFKUaBVLMmgWR0CoPCo065oXdX2UKGgGaAloD0MIKQge397lHcCUhpRSlGgVSzJoFkdAqDvp1LamGnV9lChoBmgJaA9DCLqBAu/kEw3AlIaUUpRoFUsyaBZHQKg7qMWoFV11fZQoaAZoCWgPQwjsoBLXMR4gwJSGlFKUaBVLMmgWR0CoPXUHpr1vdX2UKGgGaAloD0MIy4XKv5YHGcCUhpRSlGgVSzJoFkdAqD0ufNA1N3V9lChoBmgJaA9DCGvY74l1KhTAlIaUUpRoFUsyaBZHQKg87j+aScN1fZQoaAZoCWgPQwiaWyGsxjIQwJSGlFKUaBVLMmgWR0CoPK0zbeuWdX2UKGgGaAloD0MIghspWyQNF8CUhpRSlGgVSzJoFkdAqD5qOgg5inV9lChoBmgJaA9DCB9N9WT+YSHAlIaUUpRoFUsyaBZHQKg+I/oq0+l1fZQoaAZoCWgPQwh/TkF+NsIdwJSGlFKUaBVLMmgWR0CoPeN+b3GodX2UKGgGaAloD0MIEXFzKhmAGcCUhpRSlGgVSzJoFkdAqD2icd5prXV9lChoBmgJaA9DCCwq4nSSTSDAlIaUUpRoFUsyaBZHQKg/Y+Sr5qN1fZQoaAZoCWgPQwjL+PcZF34XwJSGlFKUaBVLMmgWR0CoPx1XeWOZdX2UKGgGaAloD0MIZRpNLsZAE8CUhpRSlGgVSzJoFkdAqD7dBUrCnHV9lChoBmgJaA9DCAJlU67wHhnAlIaUUpRoFUsyaBZHQKg+nEsJ6Y51fZQoaAZoCWgPQwilMsUcBI0gwJSGlFKUaBVLMmgWR0CoQGPoNd7fdX2UKGgGaAloD0MIWDz1SIO7IcCUhpRSlGgVSzJoFkdAqEAdkJ8fFXV9lChoBmgJaA9DCDdTIR6JzyHAlIaUUpRoFUsyaBZHQKg/3S4vvjR1fZQoaAZoCWgPQwgWTz3S4NYiwJSGlFKUaBVLMmgWR0CoP5wGnn+ydX2UKGgGaAloD0MIaxDmdi/XGMCUhpRSlGgVSzJoFkdAqEFf1nM+vHV9lChoBmgJaA9DCJlH/mDgESLAlIaUUpRoFUsyaBZHQKhBGU/OdG11fZQoaAZoCWgPQwgAyXTo9EwiwJSGlFKUaBVLMmgWR0CoQNjhcZ+AdX2UKGgGaAloD0MIf9+/eXFqIsCUhpRSlGgVSzJoFkdAqECX6XSjQHV9lChoBmgJaA9DCCBhGLDkehPAlIaUUpRoFUsyaBZHQKhCVX2dupF1fZQoaAZoCWgPQwjgDtQpj14iwJSGlFKUaBVLMmgWR0CoQg7vw3HadX2UKGgGaAloD0MI7ISX4NRHF8CUhpRSlGgVSzJoFkdAqEHOh0yP/HV9lChoBmgJaA9DCL5r0Jfe3hjAlIaUUpRoFUsyaBZHQKhBjYBeXzF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -7.162523287907243, "std_reward": 1.4868523456326537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T22:52:08.046427"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e257ff48b2a9e094763d8501aedf70e5ba8d4fde609f99c9237e29de505d7bb
3
+ size 3056