File size: 2,587 Bytes
48451f4
 
 
 
 
 
 
 
 
 
 
 
 
5b0f246
7cc2e4f
48451f4
7cc2e4f
 
 
 
 
 
 
 
 
48451f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cc2e4f
48451f4
 
 
 
 
7cc2e4f
 
 
 
 
48451f4
 
 
 
7cc2e4f
48451f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: mlcovid19-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mlcovid19-classifier

This model is a fine-tuned version of [oscarwu/mlcovid19-classifier](https://huggingface.co/oscarwu/mlcovid19-classifier) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5651
- F1 Macro: 0.6566
- F1 Misinformation: 0.9336
- F1 Factual: 0.8316
- F1 Other: 0.2048
- Prec Macro: 0.6775
- Prec Misinformation: 0.9344
- Prec Factual: 0.7907
- Prec Other: 0.3075

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4367
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
| 0.5055        | 3.67  | 500  | 0.3267          | 0.6006   | 0.9440            | 0.8517     | 0.0062   | 0.8132     | 0.9228              | 0.8502       | 0.6667     |
| 0.0876        | 7.35  | 1000 | 0.3922          | 0.6636   | 0.9412            | 0.8533     | 0.1963   | 0.6975     | 0.9255              | 0.8729       | 0.2941     |
| 0.0477        | 11.03 | 1500 | 0.4479          | 0.6715   | 0.9404            | 0.8562     | 0.2178   | 0.6939     | 0.9288              | 0.8695       | 0.2836     |
| 0.0334        | 14.7  | 2000 | 0.5123          | 0.6622   | 0.9418            | 0.8515     | 0.1935   | 0.6996     | 0.9251              | 0.8732       | 0.3007     |
| 0.0271        | 18.38 | 2500 | 0.5651          | 0.6566   | 0.9336            | 0.8316     | 0.2048   | 0.6775     | 0.9344              | 0.7907       | 0.3075     |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1