File size: 3,354 Bytes
1eefd72
 
 
 
 
 
 
 
4355138
1eefd72
 
 
 
 
4355138
1eefd72
 
 
 
 
 
 
4355138
4375df4
4355138
1eefd72
 
 
 
 
 
a973557
 
1eefd72
eba3d39
1eefd72
4375df4
 
1eefd72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375df4
1eefd72
 
 
 
 
 
4375df4
 
 
 
 
 
 
 
 
 
 
1eefd72
 
 
 
 
 
 
 
062fa6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-artworkclassifier
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: artbench10-vit
      split: test
      args: artbench10-vit
    metrics:
    - type: accuracy
      value: 0.5947786606129398
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-artworkclassifier
This model returns the artwork style of any image input.


This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. This is a subset of the artbench-10 dataset (https://www.kaggle.com/datasets/alexanderliao/artbench10), with a train set of 1000 artworks per class and a test set of 100 artworks per class.
It achieves the following results on the evaluation set:
- Loss: 1.1392
- Accuracy: 0.5948

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5906        | 0.36  | 100  | 1.4709          | 0.4847   |
| 1.3395        | 0.72  | 200  | 1.3208          | 0.5074   |
| 1.1461        | 1.08  | 300  | 1.3363          | 0.5165   |
| 0.9593        | 1.44  | 400  | 1.1790          | 0.5846   |
| 0.8761        | 1.8   | 500  | 1.1252          | 0.5902   |
| 0.5922        | 2.16  | 600  | 1.1392          | 0.5948   |
| 0.4803        | 2.52  | 700  | 1.1560          | 0.5936   |
| 0.4454        | 2.88  | 800  | 1.1545          | 0.6118   |
| 0.2271        | 3.24  | 900  | 1.2284          | 0.6039   |
| 0.207         | 3.6   | 1000 | 1.2625          | 0.5959   |
| 0.1958        | 3.96  | 1100 | 1.2621          | 0.6005   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2

### Code to Run
def vit_classify(image):
    vit = ViTForImageClassification.from_pretrained("oschamp/vit-artworkclassifier")
    vit.eval()
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    vit.to(device)
    
    model_name_or_path = 'google/vit-base-patch16-224-in21k'
    feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path)

    #LOAD IMAGE

    encoding = feature_extractor(images=image, return_tensors="pt")
    encoding.keys()

    pixel_values = encoding['pixel_values'].to(device)

    outputs = vit(pixel_values)
    logits = outputs.logits

    prediction = logits.argmax(-1)
    return prediction.item() #vit.config.id2label[prediction.item()]