File size: 2,209 Bytes
59667d9 09f005c e9e5831 59667d9 09f005c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: apache-2.0
language:
- it
widget:
- text: "milano è una [MASK] dell'italia"
example_title: "Example 1"
- text: "giacomo leopardi è stato uno dei più grandi [MASK] del classicismo italiano"
example_title: "Example 2"
- text: "la pizza è un piatto tipico della [MASK] gastronomica italiana"
example_title: "Example 3"
---
--------------------------------------------------------------------------------------------------
<body>
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model: BERT</span>
<br>
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span>
<br>
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;"> Type: Uncased</span>
<br>
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
</body>
--------------------------------------------------------------------------------------------------
<h3>Model description</h3>
This is an uncased <b>BERT</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using the uncased <b>mBERT</b> ([bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased)) as a starting point and focusing it on the Italian language by modifying the embedding layer
(as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
The resulting model has 110M parameters, a vocabulary of 30.785 tokens, and a size of ~430 MB.
<h3>Quick usage</h3>
```python
from transformers import BertTokenizerFast, BertModel
tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-base-italian-uncased")
model = BertModel.from_pretrained("osiria/bert-base-italian-uncased")
```
<h3>References</h3>
[1] https://arxiv.org/abs/1810.04805
[2] https://arxiv.org/abs/2010.05609
<h3>License</h3>
The model is released under <b>Apache-2.0</b> license
|