--- license: apache-2.0 language: - it --- --------------------------------------------------------------------------------------------------
  
    Model: DistilUSE/span>
    Lang: IT
  
--------------------------------------------------------------------------------------------------

Model description

This is a Universal Sentence Encoder [1] model for the Italian language, obtained using mDistilUSE ([distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)) as a starting point and focusing it on the Italian language by modifying the embedding layer (as in [2], computing document-level frequencies over the Wikipedia dataset) The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB. It can be used to encode Italian texts and compute similarities between them.

Quick usage

```python from transformers import AutoTokenizer, AutoModel import numpy as np tokenizer = AutoTokenizer.from_pretrained("../osiria/distiluse-base-italian/") model = AutoModel.from_pretrained("../osiria/distiluse-base-italian/") text1 = "Alessandro Manzoni è stato uno scrittore italiano" text2 = "Giacomo Leopardi è stato un poeta italiano" vec1 = model(tokenizer.encode(text1, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy() vec2 = model(tokenizer.encode(text2, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy() cosine_similarity = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)) print("COSINE SIMILARITY:", cosine_similarity) # COSINE SIMILARITY: 0.734292 ```

References

[1] https://arxiv.org/abs/1907.04307 [2] https://arxiv.org/abs/2010.05609

License

The model is released under Apache-2.0 license